

IPv6 Workshop : Location

Date

Host Configuration (Linux)

Trainer Name

 IPv6 Workshop Host configuration - Linux

2/8 - 2/8 -

Laboratory Exercise: Host Configuration (Linux)

Objectives
 In this laboratory exercise you will complete the following tasks:

• Check for IPv6 support in the running kernel
• Understand basic IPv6 concepts (NDP)
• Manually add/remove IPv6 addresses on Linux
• Use some basic IPv6 related tools

Visual Objective

The following figure shows the topology of the current laboratory.

…

RA: 2001:XXXX:XXXX:XXXX::/64

Linux/Windows Linux/Windows …

 IPv6 Workshop Host configuration - Linux

3/8 - 3/8 -

Task 1: Verify IPv6 support in your Linux

Complete the following exercise’s steps:

 Step 1: Check for IPv6 support in the running kernel.
Modern Linux distributions already contain IPv6−ready kernels, the IPv6
capability is generally compiled as a module. To check whether your current
running kernel supports, or not, IPv6 the following file must exist:
/proc/net/if_inet6

It's possible that the IPv6 module is not loaded automatically on startup. So,
verify that the module is running by listing the current loaded modules:

lsmod |grep ipv6

Task 2: Display and identify existing IPv6 addresses

Complete the following exercise’s steps:

Step 1: Check if IPv6 addresses are already configured

Run the following commands:

• ip command
ip −f inet6 addr show dev <interface>

• ifconfig command

ifconfig <interface>

Step 2: Using the previous commands, identify the different types of IPv6
addresses

• Link local (Tip: Search for fe80::…)
• auto-configuration IPv6 address (Tip: Search for …ff:fe…)
• multicast address (use netstat with –g option)
• validity of addresses

Task 3: Using some IPv6 related tools

Complete the following exercise’s steps:

Step 1: Ping IPv6 addresses
• Ping the IPv6 localhost address (::1)
• Ping your host’s link-local and global addresses (Tip: Use the option -I

in ping6 command)
• Ping your host’s multicast addresses (Tip: Use the option -I in ping6

command)

 IPv6 Workshop Host configuration - Linux

4/8 - 4/8 -

Step 2: Without looking into the router, identify the router’s link-local address for
your lan (Tip: Use the command ip −6 neigh …)
• Ping router’s addresses (link-local and global addresses). Did you

successfully ping router’s link-local address? (Tip: Use the option -I in
ping6 command)

Task 4: Add/Remove IPv6 addresses

Step 1: Manually add an IPv6 address

On your network interface, add the following address:
2001:XXXX:XXXX:XXXX::NN (where NN is the number of your PC)

You can accomplish this task using different methods:

• Using ip command (temporary address).

ip −6 addr add <ipv6address>/<prefixlength> dev <interface>

• Using ifconfig command (temporary address).
ifconfig <interface> inet6 add <ipv6address>/<prefixlength>

• Editing the file /etc/network/interfaces and and the following

lines:
iface eth0 inet6 static

turn off autoconf: up sysctl -q -w net.ipv6.conf.eth0.autoconf=0
address 2001:XXXX:XXXX:XXXX::2
netmask 64

Then you’ll need to restart your network /etc/init.d/networking
restart)

Step 2: Manually remove an IPv6 address

Remove the address created on the previous step.

You can accomplish this task using different methods:

• Using ip command.
ip −6 addr del <ipv6address>/<prefixlength> dev <interface>

• Using ifconfig command.

ifconfig <interface> inet6 del <ipv6address>/<prefixlength>

• Use this method only if you used a similar method in the previous step.

Editing the file /etc/network/interfaces and removing the inet6
entries (then you’ll need to restart your network
/etc/init.d/networking restart)

 IPv6 Workshop Host configuration - Linux

5/8 - 5/8 -

Task 5: Analyse IPv6 messages (NS/NA, RS/RA)

Step 1: Using tcpdump (tcpdump −t −n −vv –s 0 ip6 −i <Interface>) or
wireshark (Ethereal), capture neighbour advertisement and neighbour
solicitation messages. To do that, retrieve the IPv6 address of your
neighbour and ping this address.
• Which IPv6 addresses (source - destination) are used in this messages?

Step 2: Now, The router is sending router advertisements.
Using tcpdump (tcpdump −t −n −vv –s 0 ip6 −i <Interface>) or
wireshark (Ethereal), capture router advertisement and router
solicitation messages. If you want, look at Appendix A for tcpdump basic
information or use your linux manual pages.
• Which IPv6 addresses (source - destination) are used in this messages?

Step 3: Display your current IPv6 routing table (Tip: Use command route −A

inet6 or ip -6 route). Identify the next hop for your default gateway.

Summary

After completing these exercises, you should be able to:
• Verify if a kernel supports IPv6
• Check if the IPv6 module is loaded
• Identify different types of addresses
• Manually add/remove IPv6 addresses
• Visualize the IPv6 routing table

 IPv6 Workshop Host configuration - Linux

6/8 - 6/8 -

Appendix A

 Using “IPv6 tcpdump”

On Linux, tcpdump is the major tool for packet capturing. Below you can find some
examples. IPv6 support in tcpdump is available since version 3.6. tcpdump uses
expressions for filtering packets to minimize the “noise”:

• icmp6: filters native ICMPv6 traffic
• ip6: filters native IPv6 traffic (including ICMPv6)
• proto ipv6: filters tunneled IPv6−in−IPv4 traffic
• not port ssh: to suppress displaying SSH packets for running tcpdump in a

remote SSH session

Some more command line options are very useful to catch and print more information in
a packet, mostly interesting for digging into ICMPv6 packets:

• -s 512: increase the snap length during capturing of a packet to 512 bytes
• -n: don’t convert host addresses to names.
• -i: Listen on <interface>
• -vv: Even more verbose output

Example: IPv6 ping to 2001:XXXX:XXXX:XXXX::3 native over a local link

tcpdump −t −n −vv –s 512 ip6 −i eth0

tcpdump: listening on eth0
2001:XXXX:XXXX:XXXX:2e0:18ff:fe90:9205 > 2001:XXXX:XXXX:XXXX::3: icmp6: echo
¬ request (len 64, hlim 64)
2001:XXXX:XXXX:XXXX::3 > 2001:XXXX:XXXX:XXXX:2e0:18ff:fe90:9205: icmp6: echo
¬ reply (len 64, hlim 64)

 IPv6 Workshop Host configuration - Linux

7/8 - 7/8 -

Appendix B

Kernel settings in /proc−filesystem

The virtual filesystem that we call /proc contains lots of different data structures and
information gathered from the kernel at runtime, and updated whenever you try to list or
view the information. However, most of the files available through the /proc filesystem
are only available in read only mode, which means they can't be changed. This is because
they only supply us with informational data.
On the other hand, all of the variables located in /proc/sys (and the correspondent
subdirectories) are writable as well as readable.

How to set variables

The ipsysctl variables may be set in two different ways which entails two totally different
methods. The first one uses the /proc filesystem, which should come with any linux
installation as long as you have a kernel that has /proc filesystem turned on. The other
way is via the sysctl application provided with most distributions per default these days.

Using cat and echo (/proc filesystem)
Using cat and echo is the simplest way to access the /proc filesystem

You need to have read and sometimes also write access (normally root only) to the
/proc−filesystem

• Retrieving a value
The value of an entry can be retrieved using cat:
cat /proc/sys/net/ipv6/conf/all/forwarding
0

• Setting a value

A new value can be set (if entry is writable) using "echo":
echo "1">/proc/sys/net/ipv6/conf/all/forwarding

Using sysctl
Using the sysctl program to access the kernel switches is a common method today.

• Retrieving a value
The value of an entry can be retrieved through:
sysctl net.ipv6.conf.all.forwarding
net.ipv6.conf.all.forwarding = 0

• Setting a value

A new value can be set (if entry is writable):
sysctl −w net.ipv6.conf.all.forwarding=1

 IPv6 Workshop Host configuration - Linux

8/8 - 8/8 -

net.ipv6.conf.all.forwarding = 1
Note: Don't use spaces around the "=" on setting values. Also on multiple values
per line, quote them like e.g.
sysctl −w net.ipv4.ip_local_port_range="32768 61000"
net.ipv4.ip_local_port_range = 32768 61000

Values
There are several formats seen in /proc−filesystem:

• BOOLEAN: simple a "0" (false) or a "1" (true)

• INTEGER: an integer value can be unsigned, too more sophisticated lines with several

values: sometimes a header line is displayed also, if not, have a look into the kernel
source to retrieve information about the meaning of each value...

In /proc/sys/net/ipv6/… you can find plenty of IPv6 kernel parameters that can be
configured at runtime.

Next you can find a small list of IPv6 related variables (Consult Documentation/ip-
sysctl.txt to see all the existent variables)

• use_tempaddr - INTEGER
 Preference for Privacy Extensions (RFC3041).
 <= 0 : disable Privacy Extensions
 == 1 : enable Privacy Extensions, but prefer public
 addresses over temporary addresses.
 > 1 : enable Privacy Extensions and prefer temporary
 addresses over public addresses.
 Default: 0 (for most devices)
 -1 (for point-to-point devices and loopback devices)

• dad_transmits - INTEGER
 The amount of Duplicate Address Detection probes to send.
 Default: 1

• mtu - INTEGER
 Default Maximum Transfer Unit
 Default: 1280 (IPv6 required minimum)

• router_solicitation_delay - INTEGER
 Number of seconds to wait after interface is brought up
 before sending Router Solicitations.
 Default: 1

• router_solicitation_interval - INTEGER
 Number of seconds to wait between Router Solicitations.
 Default: 4

• router_solicitations - INTEGER
 Number of Router Solicitations to send until assuming no
 routers are present.
 Default: 3

