Routing Protocols Internal and External Routing

deploy

0

6DEPLOY. IPv6 Deployment and Support

Copy Rights

This slide set is the ownership of the 6DEPLOY project via its partners

The Powerpoint version of this material may be reused and modified only with written authorization

Using part of this material must mention 6DEPLOY courtesy

PDF files are available from www.6deploy.org

Looking for a contact ?

- Mail to : martin.potts@martel-consulting.ch
- Or bernard.tuy@renater.fr

Contributions

Main authors

- Carlos Friaças, FCCN, Portugal
- Miguel Baptista, FCCN, Portugal
- Pedro Lorga, FCCN, Portugal

Contributors

- Mónica Domingues, FCCN, Portugal
- Paulo Ferreira, FCCN, Portugal

Prerequisites

You should have followed previously the modules:

- 010-IPv6 Introduction
- 020-IPv6 Protocol
- 030-IPv6 Addressing

Internal Routing

- RIPng
- IS-IS
- OSPFv3

External Routing

• Multiprotocol BGP

Same as IPv4

- Based on RIPv2
- Distance vector, max. 15 hop, split-horizon, ...

It's an IPv6 only protocol

• In a dual-stack environment, running RIP, you'll need RIP (IPv4) and RIPng (IPv6)

IPv6 related functionality

- Uses IPv6 for transport
- IPv6 prefix, next-hop IPv6 address
- For RIP updates, uses multicast address FF02::9

ISISv6

OSI Protocol Based on two levels

- L2 = Backbone
- L1 = Stub
- L2L1= interconnect L2 and L1

Runs on top of CNLS

- Each IS device still sends out LSP (Link State Packets)
- Send information via TLV's (Tag/Length/values)
- Neighborship process is unchanged

Major operation remains unchanged

9/11/2008

ISISv6 #2

Updated features:

- Two new Tag/Length/Values (TLV) for IPv6
 - IPv6 Reachability
 - IPv6 Interface Address
- New network Layer Identifier
 - IPv6 NLPID

OSPFv3 = OSPF for IPv6 Based on OSPFv2

Topology of an area is invisible from outside the area

- LSA flooding is bounded by area
- SPF calculation is performed separately for each area

All areas must have a connection to the backbone

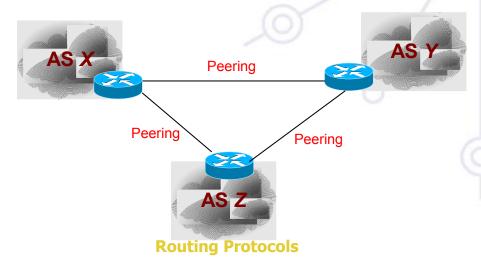
OSPFv3 is an IPv6-only protocol

- In a dual-stack environment, running OSPF, you'll need OSPFv2 (IPv4) and OSPFv3 (IPv6)
- Work-in-progress about extensible mechanisms to enable OSPFv3 with different address families support

Updated Features

- Runs directly over IPv6
- Distributes IPv6 prefixes
- New LSA types
- Uses Multicast addresses
 - ALLSPFRouters (FF02::5)
 - ALLDRouters (FF02::6)

Multiprotocol BGP


Exterior Gateway Protocol

Connect separate routing domains that contain independent routing policies (and AS numbers)

Carries sequences of AS numbers, indicating path (for each route)

Supports the same features and functionality as IPv4 BGP

Multiple addresses families: IPv4, IPv6, unicast, multicast

Multiprotocol BGP

BGP4 carries only 3 types of information wich is truly IPv4 specific:

- NLRI in the UPDATE message contains an IPv4 prefix
- NEXT_HOP attribute in the UPDATE message contains an IPv4 address
- BGP ID in AGGREGATOR attribute

Multiprotocol BGP

RFC 4760 defines multi-protocols extensions for BGP4

- this makes BGP4 available for other network layer protocols (IPv6, MPLS...)
- New BGP4 attributes:
 - MP_REACH_NLRI
 - MP_UNREACH_NLRI
- Protocol Independent NEXT_HOP attribute
- Protocol Independent NLRI attribute

Conclusions

All major routing protocols have stable IPv6 Support, and no major differences with IPv4

In a dual-stack environment, running OSPF, you'll need OSPFv2 (IPv4) and OSPFv3 (IPv6). It may change in a near future.

In a dual-stack environment, running RIP, you'll need RIPv1/RIPv2 (IPv4) and RIPng (IPv6)

9/11/2008

Questions?

Extra Slides

Routing (on systems)

There is always an IPv4 and an IPv6 routing context in every system.

OS	IPv4	IPv6
cisco Cisco (IOS)	show ip route	show ipv6 route
Microsoft WinXP	route print	netsh interface ipv6 show route
اللہ کے Linux	/sbin/route	/sbin/route –A inet6

Routing Stats (IPv6 vs. IPv4, globally)

(11/09/2008)	IPv6	IPv4
ROUTES	1505	281136
AGGREGATED	1400	170595
ROUTES	(93,02%)	(60,68%)
AUTONOMOUS	1131	29345
SYSTEMS	TTOT	
9/11/2008	Routing Protocols	source: <u>www.cidr-report.org</u> 18