IPv6 Multicast

deploy

O

0

O

o

6DEPLOY. IPv6 Deployment and Support

ינה שימו יבוי מיצי הימת המייני ייני ייניה המימה ממימה מהימה איי ממציח ייינה מימח יייני היינה היימוה יבמותי

anananananan manan manan ang Republic ananan ang

Intro

Multicast is inherent to the IPv6 protocol No broadcasts

• Multicast used instead

But some parts need to be configured

- for building the multicast trees
- for topology information (routing)

Agenda

Multicast addressing MLD & MLDv2 PIM SM/SSM Interdomain multicast

Multicast addresses format: (RFC 3513)

8 bits		4 bits	4 bits	112 bits	76
1111	1111	flags	scope	group ID	
F	F			YA VA	_/

- 8 high order bits set to 1 Addresses derived from FF00::/8 prefix
- **flag** field(4 bits) : ORPT values
 - T = 0 for permanent addresses (Defined by IANA)
 - T = 1 for transient addresses
 - Bits P and R discussed later
- scope field \rightarrow Makes it possible to limit the scope of the multicasting
 - 0 Reserved
 - 1 Node-local
 - 2 Link-local
 - 3 Subnet-local

- 4 Admin-local
- 5 Site-local
- 8 Organization-local
- E Global (Internet)

17th July 2008

IPv6 Muliticast

Multicast addressing (2)

Scopes must be configured on routers! Examples of IANA allocated addresses

- Flag bits T=P=R=0
 - Flag = 0
- Group ID 101 → NTP servers
 - FF01:0:0:0:0:0:0:101 : All the NTP servers on the sender's host
 - FF02:0:0:0:0:0:0:101 : All the NTP servers on the sender's link
 - FF05:0:0:0:0:0:0:101 : All the NTP servers on the sender's site
 - FF0E:0:0:0:0:0:0:101 : All the NTP servers on the Internet

Reserved multicast addresses: examples

Given on RFC 2375

Addresses available only for a given scope

- FF02:0:0:0:0:0:1 : All the nodes of the link
- FF02:0:0:0:0:0:0:2 : All the routers of the link
- FF05:0:0:0:0:0:0:2 : All the routers of the site
- FF02:0:0:0:0:0:D : All the PIM routers of the link
- ...

Addresses available for all scopes

- FF0X:0:0:0:0:0:0:101 : Network Time Protocol (NTP)
- FF0X:0:0:0:0:0:0:109 : MTP Multicast Transport Protocol
- ..

IPv6 multicast and Ethernet

Ethernet is multicast capable (not always implemented)

Requires 8th bit of MAC address to be set to 1

For IPv6 : @MAC = 33-33-xx-yy-zz-kk

• xx-yy-zz-kk are 32 lower bits of the IPv6 address

Example:

- IPv6@ = FF3E:40:2001:660:3007:123:1234:5678
- MAC@ = **33-33**-12-34-56-78

Solicited node multicast addresses (for NDP)

- Multicast address built from unicast address
- Concatenation of
 - FF02::1:FF00:0/104
 - 24 low order bits of the unicast address
- Nodes build their own IPv6 solicited node multicast address
- Nodes that know the IPv6 address of a host but not its MAC address can use the solicited node multicast address
 - NDP protocol (Neighbor Discovery Protocol)
 - Protocol for DAD management
- Avoids sending MAC broadcasts (FF-FF-FF-FF-FF)
- Example:
 - 2001:0660:010a:4002:4421:21FF:FE24:87c1
 - FF02:0000:0000:0000:0001:FF00:0000/104
 - FF02:0000:0000:0000:0001:FF24:87c1
 - 33-33-FF-24-87-C1 -> MULTICAST MAC ADDRESS

9

Multicast addresses derived from unicast prefixes

Described in RFC 3306

Flag : ORPT

11111111	flag	scop	reserved	Prefix Length	Network prefix	Group ID
8 bits	4	4	8 bits	8	64 bits	32 bits

- Flag : ORPT
 - P=0 Address not based on the unicast prefix
 - P=1 Address based on the unicast prefix
 - If P=1 T=1 FF30::/12 prefix
 - (T=1 because not allocated by IANA)
- Reserved : 0

Example:

prefix **2001:660**::**/32** (RENATER)

address FF3E:20:2001:660:0:0:1234:abcd

• 17th July 2008

۲

SSM addresses

Are also RFC3306 addresses

SSM addresses range: FF3X::/32

Only addresses in FF3X::/96 should be used now. These are RFC3306 addresses with:

- Plen = 0
- Prefix = 0

Example:

- FF3x::1234:abcd /96
- 1234:abcd being the Group ID

Multicast addresses allocation

« Manual » choice of multicast address and port

Dynamic

יפסן סא

- Session Announcement Protocol, (SAP), ID
 - SDR implements SAP (not scalable for a global scope)
- MADCAP, RFC 2730
 - Multicast Address Dynamic Client Allocation Protocol (too much complex, very few implementations and no deployment)
- GLOP, RFC 2770
 - Useless as we have RFC 3306

Multicast addresses derived from unicast prefixes (RFC 3306)

- Any host can derive a multicast address from the network prefix where it is connected
- Makes allocation easier
- •17tHoweto assign addresses to end user remains a problem

Agenda

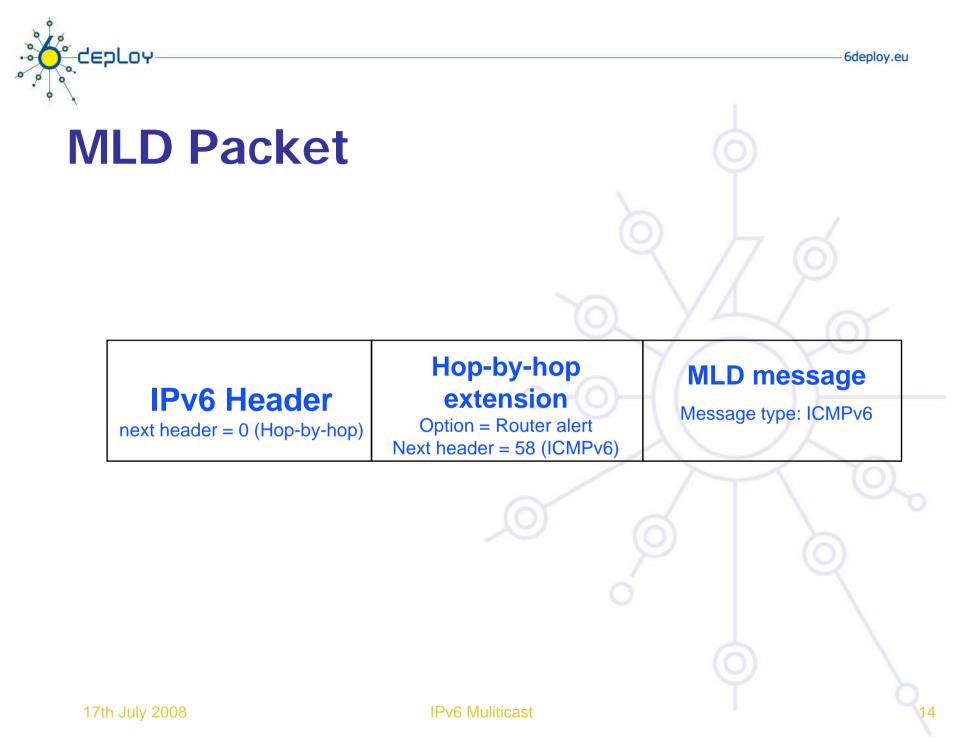
Multicast addressing MLD & MLDv2 PIM SM/SSM Interdomain multicast

MLD

Interaction protocol between

- Multicast router on the link-local
- Multicast hosts on the link-local

Host can say: « I want to join group FF0E::1234 and receive the related flow »

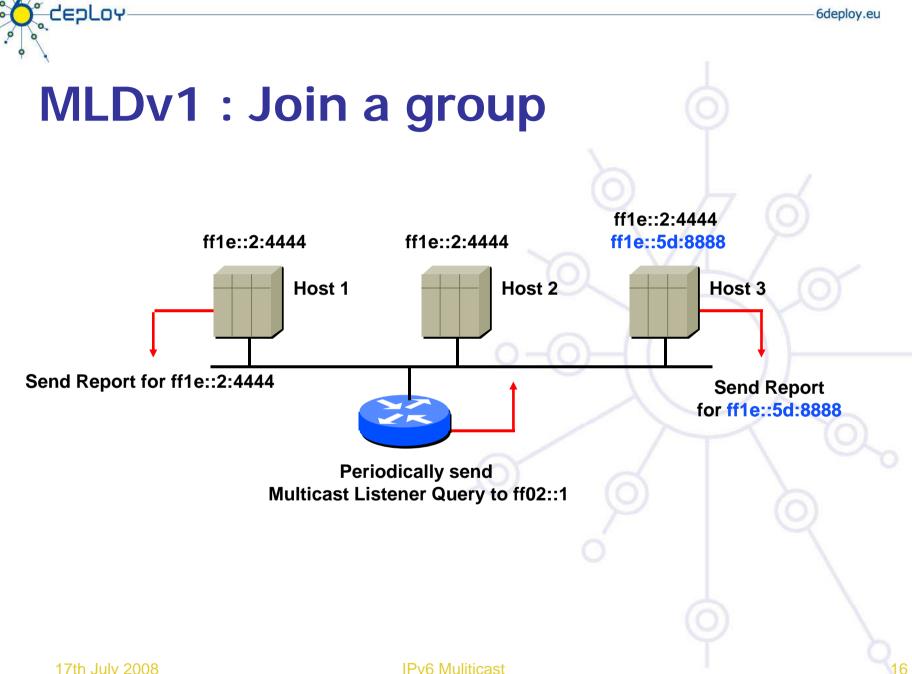

MLDv1 (RFC 2710)

• MLD <-> IGMPv2 <-> ASM only

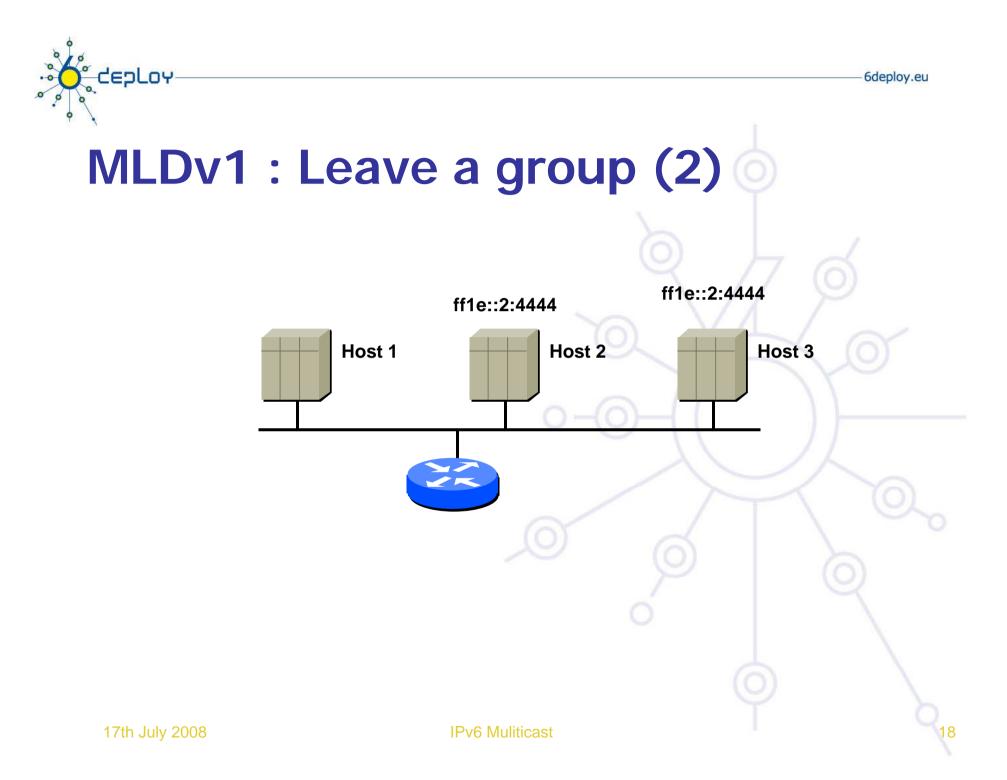
MLDv2 (RFC 3810)

MLDv2 <-> IGMPv3 <-> SSM + ASM

MLD messages are sent in ICMPv6 packets


MLDv1 Message

ביו הי


 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

- **Type** : Messages types
 - General Query and Multicast-Address-Specific Query (130)
 - Multicast Listener Report (131)
 - Multicast Listener Done (132)
- Code : Set to 0 by sender and ignored then
- **Checksum** : for the complete packet (headers+MLD message)
- Maximum Response Delay : For query messages, time by which hosts must respond
- Reserved : Not used: set to 0 and ignored then
- Multicast Address: IPv6 multicast address or 0 according to
 I7thmessage type
 IPv6 Muliticast

MLDv2 (RFC 3810)

Management of group & sources

- INCLUDE : to receive packets from sources specified in the MLDv2 message
- EXCLUDE : to receive packets from all sources except the ones specified in the MLDv2 message

2 types of messages

- Multicast listener query messages
- Multicast listener report messages

Interoperable with MLDv1

Agenda

Multicast addressing MLD & MLDv2 PIM SM/SSM Interdomain multicast

PIM SM/SSM

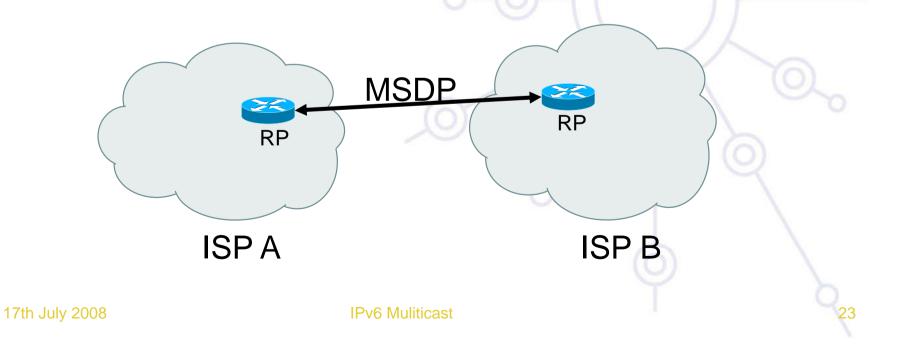
Protocol Independant Multicast No difference with PIM for IPv4

- Except PIM messages are sent with link-local IPv6 address
- Creates multicast trees between senders and receivers (distribution trees)

Not a routing protocol

Relies on other routing protocols (MBGP, static...)

Agenda


Multicast addressing MLD & MLDv2 PIM SM/SSM Interdomain multicast

Interdomain multicast (1)

No problem for SSM. Source specific trees created from senders to receivers accross domains ASM problem: was solved in the IPv4 world with MSDP (Multicast Source Discovery Protocol)

Interdomain multicast (2)

No one wants MSDP for IPv6, not manageable/scalable

SSM IETF lobby

• Some SSM applications already available

How to solve N -> M multicast?

- Application / Middleware ?
- Not there yet (ongoing work)

Embedded-RP – RFC 3956

- For each group, everyone uses the same RP
- Embedded is a solution for group-to-RP mapping
- Requires support in all PIM routers (that are part of the tree)

Embedded-RP

Flag : ORPT

LOY

11111111	flag	scop	res	rpad	Prefix Length	Network prefix	Group ID
8 bits	4	4	4	4	8	64 bits	32 bits


Flag : ORPT

- R=1 → Embedded-RP address
- If $R=1 \rightarrow P=1 \rightarrow T=1$
- FF7x::/16 addresses

Res : 0

Rpad : last 4 bits of the RP address

- E.g. RP address 2001:660:3001:104::8
 - Multicast address FF7E:0820:2001:660:3001:104:1234:abcd

