
Implementing IPv6 Applications

1

Copy …Rights

This slide set is the ownership of the 6DEPLOY project via its partners

The Powerpoint version of this material may be reused and modified only with written
authorizationauthorization

Using part of this material must mention 6DEPLOY courtesy

PDF files are available from www.6deploy.eu

Looking for a contact ?g
• Mail to : martin.potts@martel-consulting.ch
• Or bernard.tuy@renater.fr

2

Intro
We will explain how to implement IPv6 applications

• We assume knowledge of writing IPv4 applications

We also look at porting IPv4 applications to IPv6
We look at writing/porting applications written in C and the

POSIX/BSD IP 6 k t APIPOSIX/BSD IPv6 socket API
We do the same for Perl

d lWe consider common application porting issues
We look at standards and recommendations

Contributors
UCL, London
Stig Venaas – UNINETT
János Mohácsi – NIIF/Hungarnet

Enabling application for IPv6
M t IP 4 li ti b IP 6 bl dMost IPv4 applications can be IPv6 enabled

• Appropriate abstraction layers used
Providing ‘Dual stack’ IPv4 and IPv6 is bestProviding Dual stack IPv4 and IPv6 is best

• Run-time (preferable) or compile-time network mode (v6 and/or v4)
All widely used languages are IPv6-enabled

E g C/C++ Java Python Perl• E.g. C/C++, Java, Python, Perl
• Some languages make it particularly easy

E.g Java
B fiti f IP 6 i littl diffi ltBenefiting from IPv6 is a little more difficult

• Though most functionality is the similar to IPv4
• Add special functionality for IPv6 featuresp y

IPv4 and IPv6 APIs have largely converged

Heterogeneous Environments

6

Precautions for Dual StackPrecautions for Dual Stack

Avoid any explicit use of IP addresses
• Normally do Call by Name

Ensure that calls to network utilities are concentrated in one subroutineEnsure that calls to network utilities are concentrated in one subroutine
Ensure that libraries and utilities used support both stacks
Do not request functions that would not exist in both stacksDo not request functions that would not exist in both stacks

• E.g. IPsec, MIP, Neighbour Discovery may vary

Dual stack configurations

Both IPv4 and IPv6 stacks will be available during the transition periodBoth IPv4 and IPv6 stacks will be available during the transition period
Dual network stack machine will allow to provide a service both for IPv4 and IPv6

2 different implementations of network stack

8
Source : Rino Nucara, GARR, EuChinaGRID IPv6 Tutorial

Heterogeneous IPv4/IPv6 Environments

May require dual-stack client/server, accessible by both stacks
• Often used, for example, with Web services and with SIP signalling

May require transition gatewayMay require transition gateway
• As for example with IPv4 telephones accessing other IPv6 ones

May be complex, as when encrypted IPv4 messages are passed into the IPv6
networks with packet header encrypted or certificate cryptographicallynetworks with packet header encrypted, or certificate cryptographically
bound to IP4 address

Mapping IPv4 address in IPv6

IPv6/IPv4 Clients connecting to an IPv6 server at dual stack node 1 socket

10

Dual Stack Single IPv4 or IPv6 stacks
Source : Programming guidelines on transition to IPv6 T. P de Miguel, E. M. Castro

IPv4-only and IPv6-only

IPv6/IPv4 Clients connecting to an IPv4-only server and IPv6 only server atIPv6/IPv4 Clients connecting to an IPv4-only server and IPv6 only server at
dual stack node 2 sockets

11

Dual Stack or separated stack Single IPv4 or IPv6 stacks
Source : Programming guidelines on transition to IPv6 T. P de Miguel, E. M. Castro

New Applications

Simplified by writing apps using a high-level language
• E.g. JAVA seamlessly supports dual stack

Design the application in a protocol independent fashionDesign the application in a protocol independent fashion

Ensure both protocols will be simultaneously operableEnsure both protocols will be simultaneously operable

Legacy Applications

If most parts are written in say Java, and small parts in say C, try to rewrite
C part to be in Java or at least make sure that I/O is concentrated in
certain regions

Re-architect code so that it provides
• Appropriate network abstraction layer

Adjust I/f to code to fit dual-stack specsAdjust I/f to code to fit dual stack specs
• Or do all networking via a utility which is IPv6-enabled
• VIC, RAT using RTP are good example

Implementing IPv6p g

Porting
• The hardest part is often parsing of config files and internal handling of

addresses, not the socket code itself
• You may need to write code that works with both old API and new May• You may need to write code that works with both old API and new. May

end up with lots of ifdefs using old or new as appropriate. Might be good
to put this code at a low level and create wrappers around it

• It’s not uncommon that large applications have some duplication of
network code. When porting it might be a good idea to fix this

Other Issues
Renumbering & Mobility routinely result in changing IP Addressese u be g & ob ty out e y esu t c a g g dd esses

• Use Names and Resolve, Don’t Cache

Multi-homed ServersMulti homed Servers

• More Common with IPv6

• Try All Addresses ReturnedTry All Addresses Returned

Using New IPv6 Functionality

IPv6 literal addresses in URL’sIPv6 literal addresses in URL s

From RFC 2732
Literal IPv6 Address Format in URL's Syntax To use a literal IPv6 address in a URL, the literal

address should be enclosed in "[" and "]" characters. For example the following literal IPv6
addresses:
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
3ffe:2a00:100:7031::1

192 9 5 5::192.9.5.5
2010:836B:4179::836B:4179

would be represented as in the following example URLs: ou d be ep ese ed as e o o g e a p e U s
http://[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]:80/index.html
http://[3ffe:2a00:100:7031::1]
htt //[192 9 5 5]/ihttp://[::192.9.5.5]/ipng
http://[2010:836B:4179::836B:4179]

Effects on higher layers

Affects anything that reads/writes/stores/passes IP addresses
• Most IETF protocols have been updated for IPv6 compliance

Bigger IP header must be taken into account when computing max
l d ipayload sizes

Packet lifetime no longer limited by IP layer
(it never was, anyway!)

Add i f l iAddress scoping for multicast
New DNS record type: AAAA
DNS lookups may give several v4 and/or v6 addresses

•Applications may need to deal with multiple addresses
Advanced mobility

• Mobile IPv6, Network Mobility (NEMO)

Implementing IPv6p g

Miscellaneous issues 1
• For IPv6 UDP checksum is mandatory since there is no checksum in IP

header
Problematic for applications that can cope with bit errors (e g video– Problematic for applications that can cope with bit errors (e.g. video
streaming?). Might be better to have a bit error than losing packet

– UDP-Lite RFC 3828 is a solution
• connect() might try for like 30s if no response

– When trying all addresses from getaddrinfo() we may not want to
have 30s timeout for eachhave 30s timeout for each

Implementing IPv6p g

Miscellaneous issues 2

• URL format for literal IPv6 addresses (RFC 2732)
– http://[2001:db8:dead:beef::cafe]:80/

• Entering IP addresses more difficult
– Especially on a numeric/phone keypad

• Better to pass names than addresses in protocols referrals etc They can• Better to pass names than addresses in protocols, referrals etc. They can
look up addresses in DNS and use what they need
– If a dual-stack node can’t pass fqdn in protocol (referrals, sdp etc), it

should be able to pass both IPv4 and IPv6 addresses
– Important that other clients can distinguish between IPv4 and IPv6

belonging to same host, or being two different hostsbelonging to same host, or being two different hosts

Implementing IPv6p g

Miscellaneous issues 3
• Hosts will typically have several addresses

– Dual-stack hosts both IPv4 and IPv6
M h lti l IP 6 dd– May have multiple IPv6 addresses

• Multihomed or global prefix + ULA for internal
• RenumberingRenumbering

• Addresses may change over time
– Privacy addresses, e.g. every 24 hours
– When renumbering

Conclusion

Many existing applications are available in IPv6Many existing applications are available in IPv6

Porting applications to IPv6 is straightforwardPorting applications to IPv6 is straightforward
• Provided certain guidelines are followed

Heterogeneous environments provide the most
challengeschallenges

C IPv6 APIC IPv6 API

Implementing IPv6p g

Basic IPv6 socket programming

• Will go through API within RFC 3493 (Basic Socket Interface Extensions for IPv6)
and give recommendations on how to use it

• The Advanced API is specified in RFC 3542• The Advanced API is specified in RFC 3542

• There is also POSIX, or The Single UNIX Specification, Version 3 at
http://www.unix.org/version3/online.html

• RFC and POSIX are roughly the same with some minor differences. Useful to look
at both

Socket API Changes

• Name to Address Translation Functions
• Address Conversion Functions

Add D t St t• Address Data Structures
• Wildcard Addresses
• Constant Additions
• Core Sockets Functions
• Socket Options
• New Macros• New Macros

Implementing IPv6p g

Important definitions
• PF_INET6, AF_INET6 (PF_INET, AF_INET for IPv4)
• struct in6_addr {
• uint8_t s6_addr[16]; /* IPv6 address */
• };
• struct sockaddr_in6 {
• sa_family_t sin6_family; /* AF_INET6 */
• in_port_t sin6_port; /* transport layer port # */
• uint32_t sin6_flowinfo; /* IPv6 flow information */
• struct in6_addr sin6_addr; /* IPv6 address */
• uint32_t sin6_scope_id; /* set of interfaces for a scope */
• };

– sin6_flowinfo not used (yet)_

– Will discuss sin6_scope_id later

– BSD has sin6_len as member too (also sin_len in sockaddr_in)
• struct sockaddr storage {_ g
• sa_family_t ss_family; /* address family */
• char ss_pad... /* padding to make it large enough */
• };

– Used when we need a struct to store any type of sockaddry yp
– I.e., we can use it in declarations and cast if necessary
– For generic sockaddr pointer, use struct *sockaddr

Core Socket Functions
Core APIs

Use IPv6 Family and Address Structures
socket() Uses PF_INET6

Functions that pass addressesFunctions that pass addresses
bind()
connect()
sendmsg()sendmsg()
sendto()

Functions that return addresses
accept()accept()
recvfrom()
recvmsg()

()getpeername()
getsockname()

All the above function definitions are unchanged due to use of struct
k dd d dd l hsockaddr and address length

Name to Address Translation
getaddrinfo()g ()

• Pass in nodename and/or servicename string
Can Be Address and/or Port

Optional Hints for Family Type and Protocol• Optional Hints for Family, Type and Protocol
Flags – AI_PASSIVE, AI_CANNONNAME, AI_NUMERICHOST,
AI_NUMERICSERV, AI_V4MAPPED, AI_ALL, AI_ADDRCONFIG

• Pointer to Linked List of addrinfo structures Returned
Multiple Addresses to Choose From

freeaddrinfo()freeaddrinfo()
struct addrinfo {

int ai_flags;
int ai_family;
int ai socktype;

int getaddrinfo(
IN const char FAR * nodename _ yp

int ai_protocol;
size_t ai_addrlen;
char *ai_canonname;
struct sockaddr *ai addr;

IN const char FAR * nodename,
IN const char FAR * servname,
IN const struct addrinfo FAR * hints,
OUT struct addrinfo FAR * FAR * res
); _

struct addrinfo *ai_next;
};

);

Address to Name Translation
getnameinfo()g ()

• Pass in address (v4 or v6) and port
Size Indicated by salen argument
Also Size for Name and Service buffers (NI MAXHOST NI MAXSERV)Also Size for Name and Service buffers (NI_MAXHOST, NI_MAXSERV)

• Flags
NI_NOFQDN
NI_NUMERICHOST
NI_NAMEREQD
NI NUMERICSERV

int getnameinfo(
IN const struct sockaddr FAR * sa,NI_NUMERICSERV

NI_DGRAM
IN socklen_t salen,
OUT char FAR * host,
IN size_t hostlen,
OUT char FAR * serv,
IN size_t servlen,
IN int flags
);

Implementing IPv6p g

Simple old IPv4 TCP client
• /* borrowed from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf */

• struct hostent *hp;
• int i, s;

t t k dd i i• struct sockaddr_in sin;
• s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
• hp = gethostbyname("www.kame.net");

for (i 0; hp >h addr list[i]; i++) { /* not so common to loop through all */• for (i = 0; hp->h_addr_list[i]; i++) { /* not so common to loop through all */
• memset(&sin, 0, sizeof(sin));
• sin.sin_family = AF_INET;
• sin sin len = sizeof(sin); /* only on BSD */• sin.sin_len = sizeof(sin); /* only on BSD */
• sin.sin_port = htons(80);
• memcpy(&sin.sin_addr, hp->h_addr_list[i],
• hp->h length);• hp >h_length);
• if (connect(s, &sin, sizeof(sin)) < 0)
• continue;
• break;break;
• }

Implementing IPv6p g

Simple IPv4/IPv6 TCP client
• /* borrowed from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf */
• struct addrinfo hints, *res, *res0;struct addrinfo hints, res, res0;
• int error, s;
• memset(&hints, 0, sizeof(hints));
• hints.ai_family = AF_UNSPEC;
• hints.ai socktype = SOCK STREAM;hints.ai_socktype SOCK_STREAM;
• error = getaddrinfo("www.kame.net", "http", &hints, &res0);
• if (error)
• errx(1, "%s", gai_strerror(error));
• /* res0 holds addrinfo chain *// res0 holds addrinfo chain /
• s = -1;
• for (res = res0; res; res = res->ai_next) {
• s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
• if (s < 0)if (s < 0)
• continue;
• error = connect(s, res->ai_addr, res->ai_addrlen);
• if (error) {
• close(s);close(s);
• s = -1;
• continue;
• }
• break;break;
• }
• freeaddrinfo(res0);
• if (s < 0)
• die();

Implementing IPv6p g

Converting sockaddr to string

• /* from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf */

• char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV];

• /* convert to names where possible, like www.kame.net/http */
• if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), 0) != 0)

(1 “ d")• errx(1, “an error occured");

• /* or a numeric address/service port, like 127.0.0.1/80 */
• if (getnameinfo(sa sa->sa len hbuf sizeof(hbuf) pbuf sizeof(pbuf)• if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf),

NI_NUMERICHOST|NI_NUMERICSERV) != 0)
• errx(1, “an error occured");

Implementing IPv6p g

Simple old IPv4 TCP server
• /* from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf */

• int s;
• struct sockaddr_in sin;
• s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
• memset(&sin, 0, sizeof(sin));

sin sin family AF INET;• sin.sin_family = AF_INET;
• sin.sin_len = sizeof(sin); /* only on BSD */
• sin.sin_port = htons(80);
• if (bind(s &sin sizeof(sin))>= 0)• if (bind(s, &sin, sizeof(sin))>= 0)
• exit(1);
• listen(s, 5);

Implementing IPv6p g

Simple IPv4/IPv6 TCP server (1/2)

• /* from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf */

• struct addrinfo hints, *res, *res0;
• int s i on = 1;• int s, i, on = 1;
• memset(&hints, 0, sizeof(hints));
• hints.ai_family = AF_UNSPEC;
• hints.ai_socktype = SOCK_STREAM;
• hints.ai_flags = AI_PASSIVE;
• error = getaddrinfo(NULL, "http", &hints, &res0);
• if (error) {
• fprintf(stderr "%s" gai strerror(error));• fprintf(stderr, %s , gai_strerror(error));
• exit(1);
• }
• /* res0 has chain of wildcard addrs */

Implementing IPv6p g

Simple IPv4/IPv6 TCP server (2/2)
• /* borrowed from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf */

i 0;• i = 0;
• for (res = res0; res; res = res->ai_next) {
• s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
• if (s < 0)
• continue;• continue;
• #ifdef IPV6_V6ONLY
• if (res->ai_family == AF_INET6 && setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY, &on,

sizeof(on)) < 0) {
• close(s);• close(s);
• continue;
• }
• #endif
• if (bind(s res->ai addr res->ai addrlen) >= 0) {• if (bind(s, res >ai_addr, res >ai_addrlen) >= 0) {
• close(s);
• continue;
• }
• listen(s, 5);• listen(s, 5);
• socktable[i] = s;
• sockfamily[i++] = res->ai_family;
• }
• freeaddrinfo(res0);• freeaddrinfo(res0);
• if (i == 0)
• errx(1, "no bind() successful");
• /* select()/poll() across socktable[] */

Implementing IPv6p g

Server issues

• Note that we typically end up with two sockets, one for v4 and one for v6
– So need select or poll

• We also note the address family of each socket
f l f l ({ } k)– Useful for some applications (e.g. {get,set}sockopt)

• Many operating systems support sending or receiving IPv4 on an IPv6 socket
– One then only needs a single socket for receiving both

IP 4 dd itt “ ffff b d”– IPv4 address written as “::ffff:a.b.c.d”
• In the example we try to use IPV6_V6ONLY to disable this
• One will typically bind to v6 socket first, then v4 socket. Linux by default uses

mapped addresses so v4 addresses are embedded within v6 and as amapped addresses, so v4 addresses are embedded within v6, and as a
consequence doesn’t allow a subsequent bind to addresses covered by an existing
bind. But note that I haven’t tested this lately.

• Since bind() behaviour is not well-defined, we only treat it as error if all binds fail

Implementing IPv6p g

One socket server example (1/2)
• With support for mapped addresses you can use a single IPv6 socket• With support for mapped addresses you can use a single IPv6 socket
• Also single v4 or v6 socket if you only need to support one family or take family as

an argument on startup
• /* from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf *// p // p / /p / p /
• int af = AF_INET6; /* or AF_INET */
• struct addrinfo hints, *res;
• int s, i, on = 1;
• memset(&hints, 0, sizeof(hints));
• hints.ai_family = af;
• hints.ai_socktype = SOCK_STREAM;
• hints.ai_flags = AI_PASSIVE;
• error = getaddrinfo(NULL, "http", &hints, &res);
• if (error)

it(1)• exit(1);
• if (res->ai_next) {
• fprintf(stderr, "multiple addr");
• exit(1);• exit(1);
• }
• /* res has chain of wildcard addrs */

Implementing IPv6p g

One socket server example (2/2)

• /* borrowed from http://www.ipv6.or.kr/summit2003/presentation/II-2.pdf */
• s = socket(res->ai_family, res->ai_socktype,
• res->ai_protocol);

f (0)• if (s < 0)
• exit(1);
• #ifdef IPV6_V6ONLY

/* h f 6 l t ff f d dd if li bl */• /* on here for v6 only, set off for mapped addresses if applicable */
• if (res->ai_family == AF_INET6 && setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY,

&on, sizeof(on)) < 0) {
• close(s);• close(s);
• continue;
• }
• #endif#endif
• if (bind(s, res->ai_addr, res->ai_addrlen) < 0)
• exit(1);
• listen(s, 5);(,);
• freeaddrinfo(res);

Implementing IPv6p g

Scope ID
• When using link local addresses a host with multiple interfaces need to know

which interface the address is for

• This is what sockaddr in6’s sin6 scope id is for• This is what sockaddr_in6 s sin6_scope_id is for

• getaddrinfo() can automatically fill this in when called with e.g.
“www.kame.net%eth0” or “fe80::1234:5678%eth0”

• This notation is standardized, but the naming of interfaces are not

Address family independent code wherever possible

• Not separate code for v4 and v6
T t k dd i / k dd i 6 th th i dd /i 6 dd• Try to use sockaddr_in/sockaddr_in6 rather than in_addr/in6_addr

• We then have address family together with the address
• There is struct sockaddr storage that is large enough for v6 (andThere is struct sockaddr_storage that is large enough for v6 (and

sockaddr_un) that can be used for memory allocation and can be typecast
to sockaddr_in etc if necessary
F i t t t k dd *• For pointers we can use struct sockaddr *

Specific things to look for
Storing IP address in 4 bytes of an array.g y y

Use of explicit dotted decimal format in UI.

Obsolete / New:Obsolete / New:

• AF_INET replaced by AF_INET6

• SOCKADDR_IN replaced by SOCKADDR_STORAGEp y

• IPPROTO_IP replaced by IPPROTO_IPV6

• IP_MULTICAST_LOOP replaced by SIO_MULTIPOINT_LOOPBACK

• Gethostbyname() replaced by getaddrinfo()

• Gethostbyaddr() replaced bygetnameinfo()

Porting Steps -Summary
Use IPv4/IPv6 Protocol/Address Family/ / y
Fix Address Structures

in6_addr
sockaddr_in6
sockaddr_storage to allocate storage

Fix Wildcard Address UseFix Wildcard Address Use
in6addr_any, IN6ADDR_ANY_INIT
in6addr_loopback, IN6ADDR_LOOPBACK_INIT

Use IPv6 Socket Options
IPPROTO_IPV6, Options as Needed

Use getaddrinfo()Use getaddrinfo()
For Address Resolution

Perl IPv6 APIPerl IPv6 API

Implementing IPv6p g

IPv6 API of Perl5
• relying on the IPv6 support of underlying operating system
• you can write Perl applications with direct access to sockets

IP 6 API f DNS l ti i i t t f l• new IPv6 API for DNS name resolution is important for seamless
operation

• With simple API creating sockaddr in6 might be tediousp g _ g
• There are two modules for Basic IPv6 API

– Socket6
– IO::Socket::INET6

Implementing IPv6p g

Perl implementation of new IPv6 DNS + socket packing
APIAPI

• Socket6 module - available via CPAN
• implemented functions:p
• getaddrinfo() - see usage later
• gethostbyname2 HOSTNAME, FAMILY - family specific gethostbyname
• getnameinfo NAME, [FLAGS] - see usage latergetnameinfo NAME, [FLAGS] see usage later
• getipnodebyname HOST, [FAMILY, FLAGS] - list of five elements -

usage not recommended
• getipnodebyaddr FAMILY, ADDRESS - list of five elements - usage notgetipnodebyaddr FAMILY, ADDRESS list of five elements usage not

recommended
• gai_strerror ERROR_NUMBER - returns a string of the error number
• inet pton FAMILY, TEXT ADRESS - text->binary conversionet_pto , _ SS e a y co e s o
• inet_ntop FAMILY, BINARY_ADDRESS - binary-> text conversion

Implementing IPv6p g

Perl implementation of new IPv6 DNS + socket packing
API/2API/2

• pack sockaddr in6 PORT, ADDR - creating sockaddr_in6 structurep _ _ g _
• pack_sockaddr_in6_all PORT, FLOWINFO, ADDR, SCOPEID - complete

implementation of the above
• unpack sockaddr in6 NAME - unpacking sockaddr_in6 to a 2 element p _ _ p g

list
• unpack_sockaddr_in6_all NAME - unpacking sockaddr_in6 to a 4

element list
• in6addr_any - 16-octet wildcard address.
• in6addr_loopback - 16-octet loopback address

Implementing IPv6p g

Simple getaddrinfo() example

• use Getopt::Std;
• use Socket;
• use Socket6;
• use strict;

• my $inet6 = defined(eval 'PF_INET6');

• my %opt;
• getopts(($inet6 ? 'chpsn46' : 'chpsn4'), \%opt);
• if ($opt{'h'}){
• print STDERR ("Usage: $0 [-h | [-c] [-n] [-p] [-s] [-4" .
• ($inet6 && "|-6") . "] [host [serv]]]\n" .
• "-h : help\n" .
• "-c : AI_CANONNAME flag\n" .

" AI NUMERICHOST fl \ "• "-n : AI_NUMERICHOST flag\n" .
• "-p : AI_PASSIVE flag\n" .
• "-s : NI_WITHSCOPEID flag\n" .
• ($inet6 ? "-4|-6: PF_INET | PF_INET6" : "-4 : PF_INET") .
• "\n");

exit(4);• exit(4);
• }
• my $host = shift(@ARGV) if (@ARGV);
• my $serv = shift(@ARGV) if (@ARGV);
• die("Too many arguments\n") if (@ARGV);
• die("Either -4 or -6 not both should be specified\n") if ($opt{'4'} && $opt{'6'});• die(Either -4 or -6, not both should be specified\n) if ($opt{ 4 } && $opt{ 6 });

Implementing IPv6p g

Simple getaddrinfo() example/2

• my $af = PF_UNSPEC;
• $af = PF_INET if ($opt{'4'});
• $af = PF_INET6 if ($inet6 && $opt{'6'});

• my $flags = 0;
• $flags |= AI_PASSIVE if ($opt{'p'});
• $flags |= AI_NUMERICHOST if ($opt{'n'});
• $flags |= AI_CANONNAME if ($opt{'c'});

• my $nflags = NI_NUMERICHOST | NI_NUMERICSERV;
• $nflags |= NI_WITHSCOPEID if ($opt{'s'});

• my $socktype = SOCK_STREAM;
$ t l 0• my $protocol = 0;

• my @tmp = getaddrinfo($host, $serv, $af, $socktype, $protocol, $flags);
• while (my($family,$socktype,$protocol,$sin,$canonname) = splice(@tmp, $[, 5)){
• my($addr, $port) = getnameinfo($sin, $nflags);
• print("family=$family socktype=$socktype protocol=$protocol addr=$addr port=$port");• print(family=$family, socktype=$socktype, protocol=$protocol, addr=$addr, port=$port);
• print(" canonname=$canonname") if ($opt{'c'});
• print("\n");
• }

Implementing IPv6p g

Object oriented Perl socket API
• using basic socket API - sometimes complicated
• IO::Socket::INET makes creating socket easier - inherits all functions

from IO::Socket + IO::Handle
• IO::Socket::INET6 - generalisation of IO:Socket:INET to be protocol

neutral - available from CPAN
• new methods:

– sockdomain() - Returns the domain of the socket - AF_INET or AF_INET6 or
else

– sockflow () - Return the flow information part of the sockaddr structure
– sockscope () - Return the scope identification part of the sockaddr

structure
– peerflow () - Return the flow information part of the sockaddr structure for

th k t th h tthe socket on the peer host
– peerscope () - Return the scope identification part of the sockaddr

structure for the socket on the peer host

Implementing IPv6p g

IO::Socket::INET6 examples
• Trying to connect to peer trying all address/families until reach
• $sock = IO::Socket::INET6->new(PeerAddr => 'ipv6.niif.hu',
• PeerPort => 'http(80)',
• Multihomed => 1 ,
• Proto => 'tcp');

• Connecting via IPv4 only - backward compatibility with
IO::Socket::INET

• $sock = IO::Socket::INET6->new(PeerAddr => 'ipv6.niif.hu',$ (p ,
• PeerPort => 'http(80)',
• Domain => AF_INET ,
• Multihomed => 1 ,

P t > 't ')• Proto => 'tcp');

Implementing IPv6p g

IO::Socket::INET6 examples /2
• using literal ipv6 address
• $sock = IO::Socket::INET6->new(PeerAddr => '[::1]:25');

• setting up a listening socketg p g
• $sock = IO::Socket::INET6->new(Listen => 5,
• LocalAddr => 'localhost',
• LocalPort => 9000,

Proto > 'tcp')• Proto => 'tcp');

Further readingFurther reading

Implementing IPv6p g

Further reading
• RFCs

– RFC 3493: Basic Socket Interface Extensions for IPv6 (obsoletes RFC 2553)

• see getaddrinfo for an example of client/server programming in an• see getaddrinfo for an example of client/server programming in an
IPv4/IPv6 independent manner using some of the RFC 3493
extensions

– RFC 3542: Advanced Sockets Application Program Interface (API) for IPv6
(obsoletes RFC 2292)

– RFC 4038: Application Aspects of IPv6 Transition

Implementing IPv6p g

Further Reading /2
• Links

– Address-family independent socket programming for IPv6
http://www.ipv6.or.kr/summit2003/presentation/II-2.pdfp // p / /p / p

– Porting applications to IPv6 HowTo
http://gsyc.escet.urjc.es/~eva/IPv6-web/ipv6.html

– Porting Applications to IPv6: Simple and Easy - By Viagenie -Porting Applications to IPv6: Simple and Easy By Viagenie
http://www.viagenie.qc.ca/en/ipv6/presentations/IPv6%20porting%20appl_v1
.pdf

– Guidelines for IP version independence in GGF specificationsp p
http://www.ggf.org/documents/GWD-I-E/GFD-I.040.pdf

– IPv6 Forum Programming and Porting links
http://www.ipv6forum.org/modules.php?op=modload&name=Web Links&filehttp://www.ipv6forum.org/modules.php?op modload&name Web_Links&file
=index&req=viewlink&cid=56

– FreeBSD Developers' Handbook Chapter on IPv6 Internals -
http://www.freebsd.org/doc/en/books/developers-handbook/ipv6.html

Implementing IPv6p g

Further Reading /3
• Links

– Freshmeat IPv6 Development Projects - http://freshmeat.net/search/?q=IPv6
– FutureSoft IPv6 - a portable implementation of the next generation Internet p p g

Protocol Version 6, complying with the relevant RFCs and Internet drafts -
http://www.futsoft.com/ipv6.htm

– IPv6 Linux Development Tools from Deepspace.net -
h // d 6 / i / h lhttp://www.deepspace6.net/sections/sources.html

– Libpnet6 - an advanced networking library with full IPv6 support -
http://pnet6.sourceforge.net/
USAGI P j t Li IP 6 D l t P j t– USAGI Project - Linux IPv6 Development Project

http://www.linux-ipv6.org/
• Books

– IPv6 Network Programming by Jun-ichiro itojun Hagino
– UNIX Network Programming (latest version) by W. Richard Stevens
– IPv6 : Theory, Protocol, and Practice, 2nd Edition by Pete Loshin
– IPv6 Network Administration, O’Reilly

Questions

55

