

Overview IPv6 Workshop

- IPv6 Protocol Architecture Overview
 IPv6 Addressing and Sub-netting
 IPv6 Host Configuration
 - Training ISP Network Topology Overview
 - Deployment of IPV6 in Interior Gateway
 - IPv4 to IPv6 Transition technologies
 - Planning & Implementation of IPv6 on Exterior Gateway (BGP)
- Connecting ISP network to an IXP

Overview

APNIC

R

APNIC

Asia

O APNIC

IPv6 Workshop

- IPv6 Protocol Architecture Overview
- IPV6 Addressing and Sub-netting
- IPv6 Host Configuration
- Training ISP Network Topology Overview
- Deployment of IPV6 in Interior Gateway
- IPv4 to IPv6 Transition technologies
- Planning & Implementation of IPv6 on Exterior Gateway (BGP)
- Connecting ISP network to an IXP

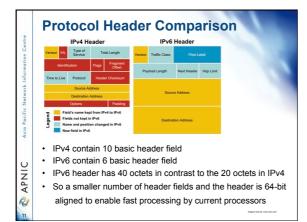
What Is IPv6?

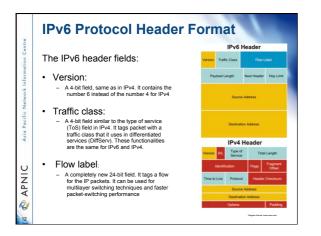
- IP stands for Internet Protocol which is one of the main pillars that supports the Internet today
- Current version of IP protocol is IPv4
- The new version of IP protocol is IPv6
- There is a version of IPv5 but it was assigned for excremental use
- IPv6 was also called IPng in the early days of IPv6 protocol development stage

Background Of IPv6 Protocol

- During the late 1980s (88-89) Internet has started to grow exponentially
- The ability to scale Internet for future demands requires a limitless supply of IP addresses and improved mobility

Asia


APNIC S


- In 1991 IETF decided that the current version of IP (IPv4) had outlived its design and need to develop a new protocol for Internet
- In 1994 IETF gave a clear direction of IPng or IPv6 after a long process of discussion (RFC1719 and RFC1726, Dec 1994)

Motivation Behind IPv6 Protocol New generation Internet need: Plenty of address space (PDA, Mobile Phones, Tablet PC, Car, TV etc etc ©) Solution of very complex hierarchical addressing need, which IPv4 is unable provide End to end communication without the need of NAT for some real time application i.e online transaction Ensure security, reliability of data and faster processing of protocol overhead Stable service for mobile network i.e Internet in airline

ion Centre	New Functional Improvement In IPv6 • Address Space – Increase from 32-bit to 128-bit address space
nformation	Management
Asia Pacific Network I	 Stateless autoconfiguration means no more need to configure IP addresses for end systems, even via DHCP
Asia	Performance
APNIC	 Fixed header sizes (40 byte) and 64-bit header alignment mean better performance from routers and bridges/switches
4 🖉 💩	No hop-by-hop segmentation – Path MTU discovery

10	New Functional Improvement In IPv6
on Centre	Multicast/Multimedia
rk Information	 Built-in features for multicast groups, management, and new "anycast" groups
Network	Mobile IP
Asia Pacific	 Eliminate triangular routing and simplify deployment of mobile IP-based systems
	 Virtual Private Networks
APNIC	 Built-in support for ESP/AH encrypted/ authenticated virtual private network protocols; built-in support for QoS tagging
10	No more broadcast

0	IPv6 Protocol Header Format					
Centre		I	Pv6 He	eader		
	 Payload length: This 16-bit field is similar to the IPv4 Total Length 	Version Traffic 6	Class	Flow La	stel	
Informe	Field, except that with IPv6 the Payload Length field is the length of the data carried after the header, whereas with IPv4 the Total Length Field	Payload Len	gh M	vext Header	Hop Limit	
Network	included the header. Next header:		Source A	ddress		
Asia Pacific Network Information	 The 8-bit value of this field determines the type of information that follows the basic IPv6 header. It can be a transport-layer packet, such as TCP or UDP. or it can be an extension header. The next 		Destination	Address		
A	header field is similar to the protocol field of IPv4.	1	Pv4 H	eader		
	Hop limit:	Version IHL	Type of Service		Length	
U	 This 8-bit field defines by a number which count 	Identificat		Flags	Fragment Offset	
z	the maximum hops that a packet can remain in the network before it is destroyed. With the IPv4 TLV	Time to Live	Protocol	Header C	Thecksum	
ΔP	field this was expressed in seconds and was		Source A	ddress		
🖉 APNIC	typically a theoretical value and not very easy to estimate.		Destination options	Address	Padding	
				Daran Jacor ere		

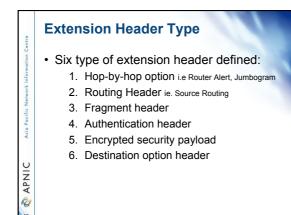
IPv6 Extension Header

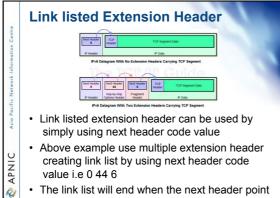
- Adding an optional Extension Header in IPv6 makes it simple to add new features in IP protocol in future without a major re -engineering of IP routers everywhere
- The number of extension headers is not fixed, so the total length of the extension header chain is variable
- The extension header will be placed in-٠ between main header and payload in IPv6 packet

IPv6 Extension Header

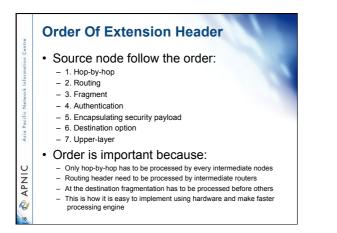
- If the Next Header field value (code) is 6 it determine that there is no extension header and the next header field is pointing to TCP header which is the payload of this IPv6 packet
- · Other code value of Next Header field: 0 Hop-by-hope option2 ICMP

Asia


APNIC


- 6 TCP

Asia


APNIC S

- 17 UDP
 43 Source routing
- 44 Fragmentation
- 50 Encrypted security payload - 51 Authentication
- - 59 Null (No next header)
 60 Destination option

Fragmentation Handling In IPv6

- Routers handle fragmentation in IPv4 which cause variety of processing performance issues
- IPv6 routers no longer perform fragmentation. IPv6 host use a discovery process [Path MTU Discovery] to determine most optimum MTU size before creating end to end session
- In this discovery process, the source IPv6 device attempts to send a packet at the size specified by the upper IP layers [i.e TCP/Application].
- If the device receives an "ICMP packet too big" message, it informs the upper layer to discard the packet and to use the new MTU.
- The "ICMP packet too big" message contains the proper MTU size for the pathway.
 - Each source device needs to track the MTU size for each session.

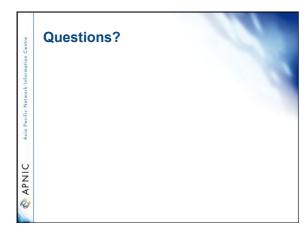
MTU Size Guideline

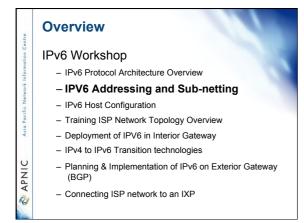
R

(i la

APNIC

APNIC S


- MTU for IPv4 and IPv6
- MTU is the largest size datagram that a given link layer technology can support [i.e HDLC]
- Minimum MTU 68 Octet [IPv4] 1280 Octet [IPV6]
- Most efficient MTU 576 [IPv4] 1500 [IPv6]
- Important things to remember:
- Minimum MTU for IPv6 is 1280
- Most efficient MTU is 1500
- Maximum datagram size 64k


Size of The IPv6 Datagram

- The maximum size of IPv6 datagram will be determined by two factor:
 - Maximum Transmission Unit (MTU) of intermediate nodes [L2 link technology can support i.e HDLC]
 - Payload length of IPv6 header which is 16 bit so normal payload can not be larger then 64k octets.
 - Jumbogram can increase IPv6 datagram size larger then 64k octets. But they need special processing on each hop since they are oversize.
- One of two uses of hop-by-hop option header is Jumbogram

mation Centre	IPv6 Header Compression
	IPv6 header size is double then IPv4
etwork Inforr	 Some time it becomes an issue on limited bandwidth link i.e Radio
Asia Pacific Ne	 Robust Header Compression [RoHC] standard can be used to minimize IPv6 overhead transmission in limited bandwidth link

& APNIC • RoHC is IETF standard for IPv6 header compression

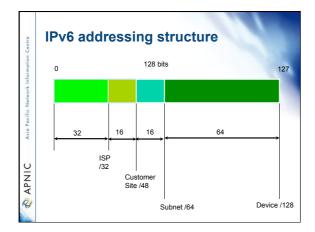
Size of the IPv6 address space

- An IPv6 address is 16 octets (128 bits)
- This would allow every person on the planet to have their own internet as large as the current Internet
- It is difficult to foresee running out of IPv6 addresses

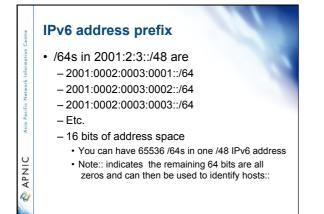
IPv6 addressing

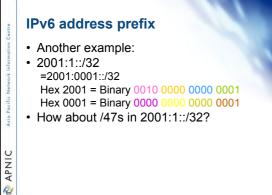
- 128 bits of address space
- · Hexadecimal values of eight 16 bit fields
 - X:X:X:X:X:X:X:X (X=16 bit number, ex: A2FE)
 16 bit number is converted to a 4 digit hexadecimal number

· Example:

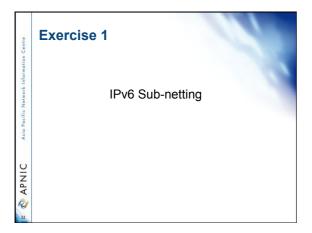

Asia

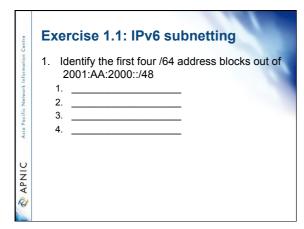
APNIC S

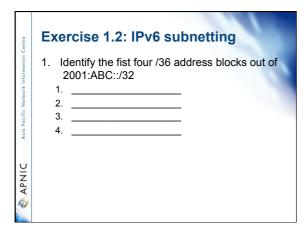

Asia


O APNIC

- FE38:DCE3:124C:C1A2:BA03:6735:EF1C:683D
- Abbreviated form of address
 - 4EED:0023:0000:0000:036E:1250:2B00
 - →4EED:23:0:0:0:36E:1250:2B00
 →4EED:23::36E:1250:2B00
 - (Null value can be used only once)




Centre	IPv6 address prefix
Network Information Co	 When you do IPv6 sub-netting, you need to think in binary values not in hexadecimal value
	• 2001:1::/32 =2001:0001::/32
Asia Pacific	Hex 2001 = Binary 0010 0000 0000 0001 Hex 0001 = Binary 0000 0000 0000 0001
	• 2001:2:3::/48 =2001:0002:0003::/48
APNIC	Hex 2001 = Binary 0010 0000 0000 0001 Hex 0002 = Binary 0000 0000 0000 0010
V	Hex 0003 = Binary 0000 0000 0000 0011



entre	IPv6 address prefix
Pacific Network Information Ce	 How about /47s in 2001:1::/32? Hex 2001 = Binary 0010 0000 0000 0001 = 16 bits Hex 0001 = Binary 0000 0000 0000 001 = 32 Hex 0000 = Binary 0000 0000 0000 = 47 (32 bits in prefix - Tixed , 15 bits in submet) So the 15 subnet bits (red), are used to identify the /47s: Subnets numbered using these bits Binary 0000 0000 0000 = Hex 0000 The first /47 is 2001:0001:0000::/47
Asia Pa	Binary 0000 0000 0000 0010 = Hex 0002 So the second /47 is 2001:0001:0002::/47
	Binary 0000 0000 0000 0100 = Hex 0004 So the third /47 is 2001:0001:0004::/47
APNIC	Binary 0000 0000 0000 0110 = Hex 0006 So the fourth /47 is 2001:0001:0006::/47
A Q	Binary 0000 0000 0000 1000 = Hex 0008 So the fifth /47 is 2001:0001:0008 ::/47

Exercise 1.3: IPv6 subnetting

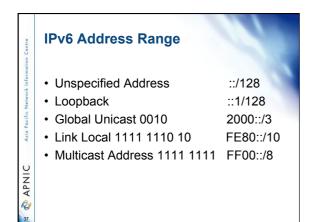
Asia

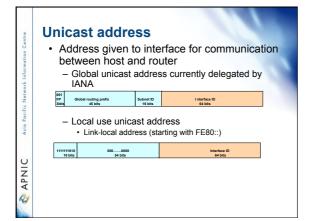
NIC

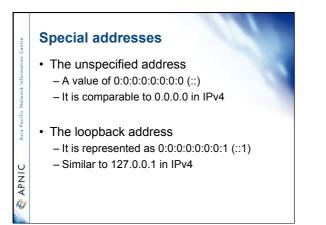
Asia Pacific

APNIC S

5.

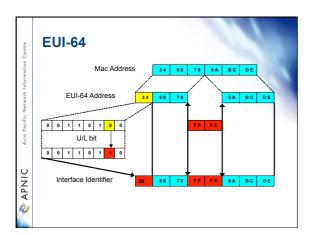

6. _

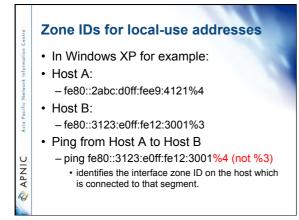

Identify the first six /37 address blocks out of 2001:AA::/32


A AD	AL	
Г		IPv6 addressing model
Information Contra		

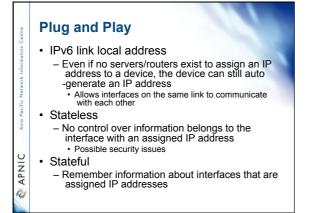
An identifier for a single interface

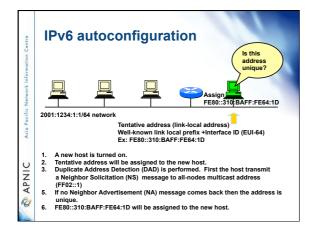
- Anycast
 An identifier for a set of interfaces
- Multicast
 An identifier for a group of nodes

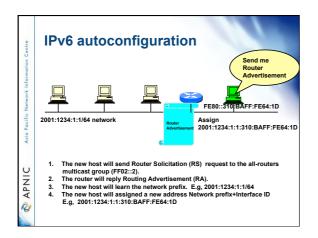


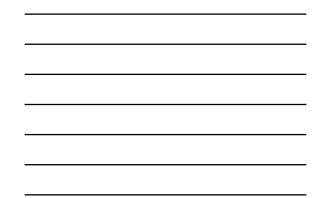

Interface ID

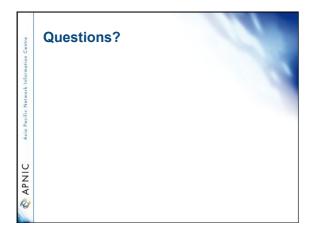
Asia

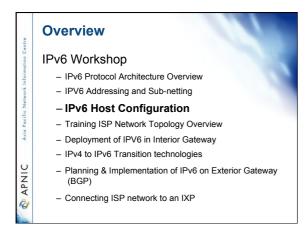

APNIC S

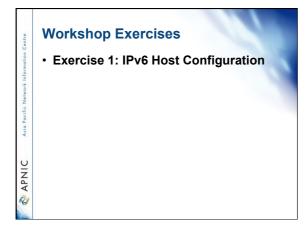

- The lowest-order 64-bit field addresses may be assigned in several different ways:
 - auto-configured from a 48-bit MAC address expanded into a 64-bit EUI-64
 - assigned via DHCP
- manually configured
- auto-generated pseudo-random number
- possibly other methods in the future






Centre	IPv6 autoconfiguration
Asia Pacific Network Information C	 Stateless mechanism For a site not concerned with the exact addresses No manual configuration required Minimal configuration of routers No additional servers
APNIC S	 Stateful mechanism For a site that requires tighter control over exact address assignments Needs a DHCP server DHCPv6

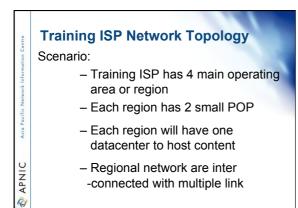


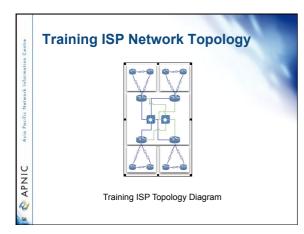



Exercise 1: IPv6 Host Configuration

- Windows XP SP2
- netsh interface ipv6 install
- Windows XP
- ipv6 install

Asia


APNIC

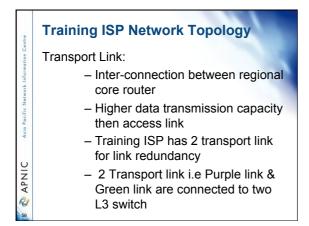

Verify your Configuration • c:\>ipconfig

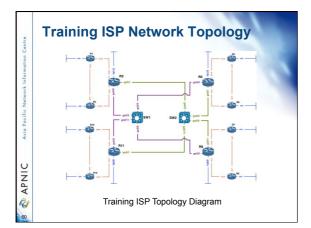
Training ISP Network Topology

Regional Network:

Asia

APNIC S


- Each regional network will have 3 routers
- 1 Core & 2 Edge Routers
- 2 Point of Presence (POP) for every region
- POP will use a router to terminate customer network i.e Edge Router
- Each POP is an aggregation point of ISP customer


Training ISP Network Topology

Access Network:

APNIC S

- Connection between customer network & Edge router
- Usually 10 to 100 MBPS link
- Separate routing policy from most of ISP
- Training ISP will connect them on edge router with separate customer IP prefix

Design Consideration:

APNIC S

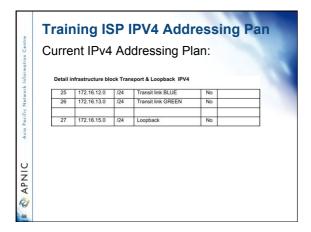
- Each regional network should have address summarization capability for customer block.
- Prefix planning should have scalability option for next couple of years for both customer block and infrastructure
- No Summarization require for WAN and loopback address

Training ISP Network Topology Design Consideration: Conservation will get high preference for IPv4 address planning and aggregation will get high preference for IPv6 address planning.

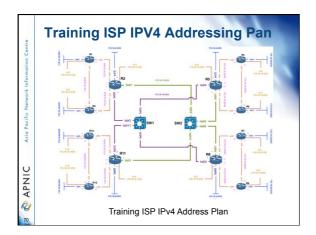
Training ISP Network Topology

Design Consideration:

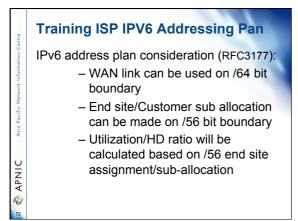
O APNIC


- OSPF is running in ISP network to carry infrastructure IP prefix
- Each region is a separate OSPF area
- Transport core is in OSPF area 0
- Customer will connect on either static or eBGP (Not OSPF)
- -iBGP will carry external prefix within ISP network

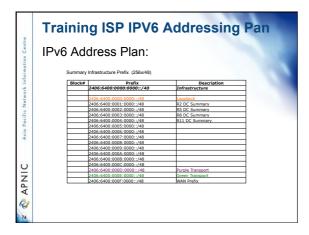
Centre	Training ISP Network Topology
Information (Design Consideration: – Training ISP is already in
Network I	production with IPv4 protocol
Asia Pacific	 Need to implement IPv6 within the same infrastructure
υ	 Down time need to minimize as less as possible
PINIC	 There has to be a smooth migration plan from IPv4 to IPv6


	entip	v4 A	ddressing P	lan	
Detail D	C infrastructur	e block IF	PV4		
Block#	Prefix	Size	Description	SOR	Register
2	172.16.0.0	/20	Infrastructure		
4	172.16.0.0	/23	Router2 DC summary net		
5	172.16.0.0	/24	Router2 DC	No	Recommended
6	172.16.2.0	/23	Router5 DC summary net		
7	172.16.2.0	/24	Router5 DC	No	Recommended
8	172.16.4.0	/23	Router8 DC summary net		
9	172.16.4.0	/24	Router8 DC	No	Recommended
10	172.16.6.0	/23	Router11 DC summary net		
11	172.16.6.0	/24	Router11 DC	No	Recommended

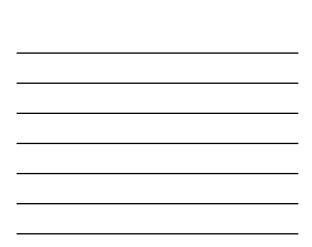
Jur	Tent IP				
	i ciit ii	V4	Addressin	g Pla	an:
etail i	nfrastructure WA	N bloc	k IPV4		
12	172.16.10.0	/24	WAN prefix		Optional
13	172.16.10.0	/30	Router2-1 WAN	No	
14	172.16.10.4	/30	Router2-3 WAN	No	
15	172.16.10.8	/30	Router1-3 WAN	No	
16	172.16.10.24	/30	Router5-4 WAN	No	
17	172.16.10.28	/30	Router5-6 WAN	No	
18	172.16.10.32	/30	Router4-6 WAN	No	
19	172.16.10.48	/30	Router8-7 WAN	No	
20	172.16.10.52	/30	Router8-9 WAN	No	
21	172.16.10.56	/30	Router7-9 WAN	No	
22	172.16.10.72	/30	Router11-10 WAN	No	
22					



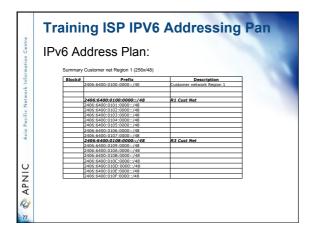
urr	entir			F	
		v-+	Addressi	ig F	nan.
Detail c	ustomer block	PV4			
Block#	Prefix	Size	Description	SOR	Register
28	172.16.6.0	/20	Customer network		
29	172.16.16.0	/22	Router2 summary net		
30	172.16.16.0	/23	Router1 CS network	Yes	Must
31	172.16.18.0	/23	Router3 CS network	Yes	Must
32	172.16.20.0	/22	Router5 summary net		
33	172.16.20.0	/23	Router4 CS network	Yes	Must
34	172.16.22.0	/23	Router6 CS network	Yes	Must
35	172.16.24.0	/22	Router8 summary net		
36	172.16.24.0	/23	Router7 CS network	Yes	Must
37	172.16.26.0	/23	Router9 CS network	Yes	Must
38	172.16.28.0	/22	Router11 summary net	+	
39	172.16.28.0	/23	Router10 CS network	Yes	Must
40	172.16.30.0	/23	Router12 CS network	Yes	Must

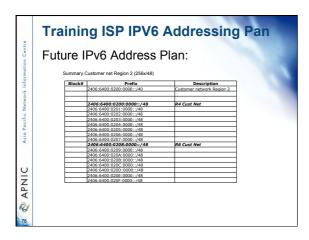


Training ISP IPV6 Addressing Pan IPv6 address plan consideration: Big IPv6 address space can cause very very large routing table size Most transit service provider apply IPv6 prefix filter on anything other then /32 & /48 prefix size Prefix announcement need to send to Internet should be either /32 or /48 bit boundary

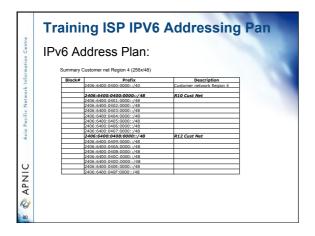


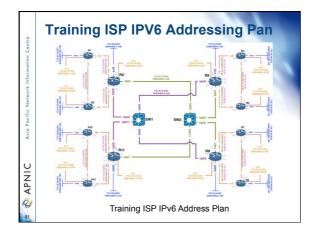
		6 Addressing P	
IPv6 A	ddress Plan:		
Summa	ry Parent Block & Regional Network	(256x/40)	
Block#	Prefix	Description	
	2406:6400::/32	Parent Block	
	2406:6400:0000:0000::/40	Infrastructure	
	2406:6400:0000:0000::/40	Customer network Region 1	
	2406:6400:0200:0000::/40	Customer network Region 2	
	2406:6400:0300:0000::/40	Customer network Region 3	
	2406:6400:0400:0000::/40	Customer network Region 4	
	2406:6400:0500:0000::/40		
	2406:6400:0600:0000::/40		
	2406:6400:0700:0000::/40		
	2406:6400:0800:0000::/40		
	2406:6400:0900:0000::/40		
	2406:6400:0A00:0000::/40		
	2406:6400:0B00:0000::/40		
	2406:6400:0C00:0000::/40		
	2406:6400:0D00:0000::/40		
	2406:6400:0E00:0000::/40		
	2406:6400:0F00:0000::/40		



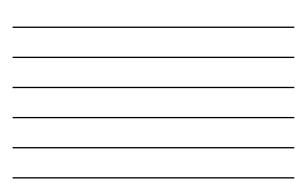

IPv6 Address	Plan W	/AN Prefix:	
2406:6400:000F:0000::/48	WAN Prefix (65535x/64)	
2406:6400:000F:0000::/64	R2-R1	2406:6400:000F:0010::/64	R5-R4
2406:6400:000F:0001::/64	R2-R3	2406:6400:000F:0011::/64	R5-R6
2406:6400:000F:0002::/64	R1-R3	2406:6400:000F:0012::/64	R4-R6
2406:6400:000F:0003::/64		2406:6400:000F:0013::/64	
2406:6400:000F:0004::/64		2406:6400:000F:0014::/64	
2406:6400:000F:0005::/64		2406:6400:000F:0015::/64	
2406:6400:000F:0006::/64		2406:6400:000F:0016::/64	
2406:6400:000F:0007::/64		2406:6400:000F:0017::/64	
2406:6400:000F:0008::/64		2406:6400:000F:0018::/64	
2406:6400:000F:0009::/64		2406:6400:000F:0019::/64	
2406:6400:000F:000A::/64		2406:6400:000F:001A::/64	
2406:6400:000F:000B::/64		2406:6400:000F:001B::/64	
2406:6400:000F:000C::/64		2406:6400:000F:001C::/64	
2406:6400:000F:000D::/64		2406:6400:000F:001D::/64	
2406:6400:000F:000E::/64		2406:6400:000F:001E::/64	
2406:6400:000F:000F::/64		2406:6400:000F:001F::/64	

IPv6 Address	Plan:		
2406:6400:000F:0000::/48	WAN Prefix (65535x/64)	
2406:6400:000F:0030::/64	R11-R10	2406:6400:000F:0020::/64	R8-R7
2406:6400:000F:0030::/64	R11-R10	2406:6400:000F:0020:7/64	R8-R7
2406:6400:000F:0032::/64	R10-R12	2406:6400:000F:0021:1/64	R7-R9
2406:6400:000F:0033::/64	KIU-KIZ	2406:6400:000F:0023::/64	K/*K9
2406:6400:000F:0034::/64		2406:6400:000F:0024::/64	
2406:6400:000F:0035::/64		2406:6400:000F:0025::/64	
2406:6400:000F:0036::/64		2406:6400:000F:0026::/64	
2406:6400:000F:0037::/64		2406:6400:000F:0027::/64	
2406:6400:000F:0038::/64		2406:6400:000F:0028::/64	
2406:6400:000F:0039::/64		2406:6400:000F:0029::/64	
2406:6400:000F:003A::/64		2406:6400:000F:002A::/64	
2406:6400:000F:003B::/64		2406:6400:000F:002B::/64	
2406:6400:000F:003C::/64		2406:6400:000F:002C::/64	
2406:6400:000F:003D::/64		2406:6400:000F:002D::/64	
2406:6400:000F:003E::/64		2406:6400:000F:002E::/64	
2406:6400:000F:003F::/64		2406:6400:000F:002F::/64	





10. /	^	dalara a Diana i		
IPV	S A	ddress Plan:		
Si	ummary	Customer net Region 3 (256x/48)		
Г	Block#	Prefix	Description	
E	DIOCK	2406:6400:0300:0000::/40	Customer network Region 3	
H		2406:6400:0300:0000::/48	R7 Cust Net	
- H		2406:6400:0301:0000::/48	K7 Cust Het	
- F		2406:6400:0301:0000::/48		
		2406:6400:0303:0000::/48		
		2406:6400:0304:0000::/48		
C	-	2406:6400:0305:0000::/48		
	-	2406:6400:0306:0000::/48		
		2406:6400:0307:0000::/48		
L		2406:6400:0308:0000::/48	R9 Cust Net	
- F		2406:6400:0309:0000::/48		
- F		2406:6400:030A:0000::/48		
H		2406:6400:030B:0000::/48 2406:6400:030C:0000::/48		
- H		2406:6400:030C:0000::/48		
		2406:6400:030E:0000::/48		
- F				



Overview

(N I O

APNIC

Asia

APNIC S

IPv6 Workshop

- IPv6 Protocol Architecture Overview
- IPV6 Addressing and Sub-netting
- IPv6 Host Configuration
- Training ISP Network Topology Overview
- Deployment of IPV6 in Interior Gateway
- IPv4 to IPv6 Transition technologies
- Planning & Implementation of IPv6 on Exterior Gateway (BGP)
- Connecting ISP network to an IXP

Configuration of OSPF as IGP

Scenario:

- Training ISP need to configure OSPF as IGP for both IPv4 and IPv6
- Dual stack mechanism will be used to ensure both IPv4 and IPv6 operation
- OSPFv3 supports IPv6 routed protocol
- IGP is used to carry next hop only for BGP

Configuration of OSPF as IGP

Minimum Router OS require for OSPF3:

Cisco IOS

APNIC S

O APNIC

APNIC

-12.2(15)T or later (For OSPFv3) -12.2(2)T or later (For IPv6 support) Jun OS

–JUNOS 8.4 or later

Configuration of OSPF as IGP

Before enabling OSPF3 on an Interface following steps must be done on a Router: –Enable IPv6 unicast routing –Enable IPv6 CEF

config t
ipv6 unicast-routing
ipv6 cef (distributed cef)

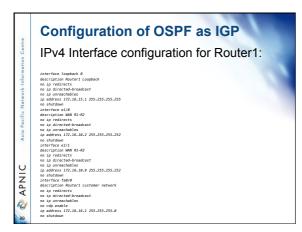
Configuration of OSPF as IGP

Configure interface for both IPv4 and IPv6:

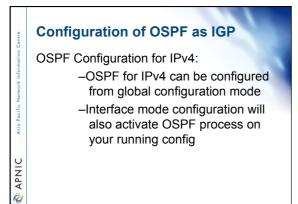
- interface e1/0
 description WAN R1-R2
 no ip redirects
 no ip directed-broadcast
 no ip unreachables
 ip address 172.16.10.2 255.255.252
 no shutdown
 interface e1/0
- ipv6 address 2406:6400:000F:0000::2/64 ipv6 enable

Configuration of OSPF as IGP

Verify Interface configuration:


sh ip interface e0/0 ping 172.16.10.1

Asia


APNIC S

88

sh ipv6 interface e0/0 ping 2406:6400:000F:0000::2

0	Configuration of OSPF as IGP
ation Cent	IPv6 Interface configuration for Router1:
APNIC Asia Pacific Network Information Centre	<pre>interface loopback 0 ipv6 address 2406:6400:0000:0000::1/128 ipv6 enable interface e1/0 ipv6 address 2406:6400:000F:0000::2/64 ipv6 enable interface e1/1 ipv6 address 2406:6400:000F:0002::1/64 ipv6 enable interface fa0/0 ipv6 address 2406:6400:0100:0000::1/48</pre>

<page-header><page-header>

Configuration of OSPF as IGP

OSPF for IPv6 Configuration Command:

router ospf 17821 log-adjacency-changes passive-interface default network 172.16.15.1 0.0.0.0 area 1 no passive-interface e1/0 network 172.16.10.0 0.0.0.3 area 1 no passive-interface e1/1 network 172.16.10.8 0.0.0.3 area 1

Asia

O APNIC

Configuration of OSPF as IGP

OSPF for IPv6 Configuration Command:

interface loopback 0 ipv6 ospf 17821 area 0 interface e1/0 ipv6 ospf 17821 area 1

Asia

APNIC S

Configuration of OSPF as IGP Verify OSPF configuration:

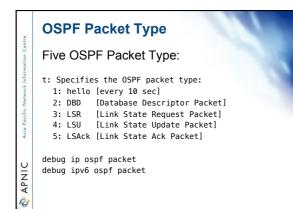
sh runn

Asia

APNIC S

Asia

O APNIC


!
interface Ethernet1/0
description WAN R1-R2
ip address 172.16.10.2 255.255.255.252
no ip redirects
no ip unreachables
half-duplex
ipv6 address 2406:6400:F::2/64
ipv6 enable
ipv6 ospf 17821 area 1

Configuration of OSPF as IGP

Example OSPF configuration for Router1:

router ospf 17821 log-adjacency-changes passive-interface default network 172.16.15.1 0.0.0.0 area 1 no passive-interface e1/0 network 172.16.10.0 0.0.0.3 area 1 no passive-interface e1/1 network 172.16.10.8 0.0.0.3 area 1

interface loopback 0 ipv6 ospf 17821 area 1 interface e1/0 ipv6 ospf 17821 area 1 interface e1/1 ipv6 ospf 17821 area 1

Deployment IPV6 in IGP

OSPFv3 or OSPF for IPv6 Overview:

- OSPFv3 is described in RFC 2740
- Most of OSPF3 functions are same as OSPFv2
- In OSPFv3 routing process does not need to be explicitly created. Simply enabling OSPF on an interface will create routing process on a router

Deployment IPV6 in IGP

APNI S

Asia

O APNIC

OSPFv3 or OSPF for IPv6 Overview:

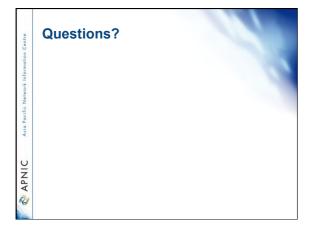
- Multiple instances of OSPFv3 can be run on a link which is unlike in OSPFv2
- OSPFv3 still use 32 bit address as router ID. If no IPv4 address is configured on any interface need to use router-id command to set 32 bit router-id.

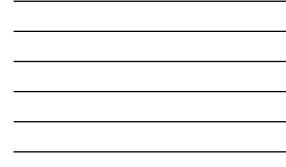
Centre	Deployment IPV6 in IGP
Pacific Network Information Cer	OSPFv3 or OSPF for IPv6 Overview: – OSPFv3 require IPSec to enable authentication. Crypto images are required to use adjacency authentication
APNIC Asio	 To use IPSec AH you must use <i>IPv6 0SPF authentication</i> command To use IPSec ESP you must enable <i>IPv6 0SPF encryption</i> command

Deployment IPV6 in IGP

OSPFv3 or OSPF for IPv6 Overview:

- LSA types and functions in OSPF3 are same as OSPF2
- OSPFv3 use IPv6 address
 FF02::5 for AllSPF router multicast and IPv6 address FF02::6 for AllD router multicast
- DR/BDR concepts for Broadcast Multi-access network are same in OSPFv3 as OSPFv2


Deployment IPV6 in IGP


APNI S

Asia

O APNIC

- OSPFv3 or OSPF for IPv6 Overview:
 - The Hello packet now contains no address information at all, and includes an Interface ID which the originating router has assigned to uniquely identify (among its own interfaces) its interface to the link.
 - This Interface ID becomes the Netowrk-LSA's Link State ID, obviously when the router become Designated-Router on the link.

Overview

(N I O

O APNIC

Asia

APNIC S

IPv6 Workshop

- IPv6 Protocol Architecture Overview
- IPV6 Addressing and Sub-netting
- IPv6 Host Configuration
- Training ISP Network Topology Overview
- Deployment of IPV6 in Interior Gateway
- IPv4 to IPv6 Transition technologies
- Planning & Implementation of IPv6 on Exterior Gateway (BGP)
- Connecting ISP network to an IXP

Transition overview

- How to get connectivity from an IPv6 host to the global IPv6 Internet?
 - Via an native connectivity
 - Via IPv6-in-IPv4 tunnelling techniques
- IPv6-only deployments are rare
- · Practical reality
- Sites deploying IPv6 will not transit to IPv6
 -only, but transit to a state where they support both IPv4 and IPv6 (dual-stack)

🗞 APNIC Asia Pacific Network Information Centre

(i la

O APNIC

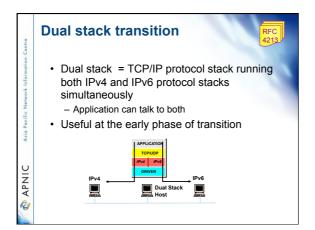
Asia

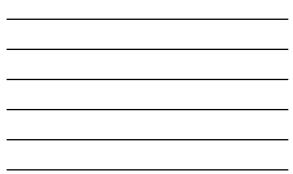
APNIC S

IPv4 to IPv6 transition

- Implementation rather than transition
 No fixed day to convert
- The key to successful IPv6 transition
 - Maintaining compatibility with IPv4 hosts and routers while deploying IPv6
 - Millions of IPv4 nodes already exist
 - Upgrading every IPv4 nodes to IPv6 is not feasible
 No need to convert all at once
 - Transition process will be gradual

Transition overview


- Three basic ways of transition
 Dual stack
 - Deploying IPv6 and then implementing IPv6
 -in-IPv4 tunnelling
 - IPv6 only networking


 Different demands of hosts and networks to be connected to IPv6 networks will determine the best way of transition

Transition overview

- Dual stack
 - Allow IPv4 and IPv6 to coexist in the same devices and networks
- Tunnelling
 - Allow the transport of IPv6 traffic over the existing IPv4 infrastructure
- Translation
- Allow IPv6 only nodes to communicate with IPv4 only nodes

als by Silvia Hagen, p255

Dual stack

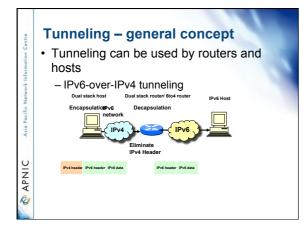
Asia

APNIC

- A host or a router runs both IPv4 and IPv6 in the protocol TCP/IP stack.
- · Each dual stack node is configured with both IPv4 and IPv6 addresses
- Therefore it can both send and receive datagrams belonging to both protocols
- · The simplest and the most desirable way for IPv4 and IPv6 to coexist

Dual stack Challenges - Compatible software • Eg. If you use OSPFv2 for your IPv4 network you need to run OSPFv3 in addition to OPSFv2 - Transparent availability of services Asia · Deployment of servers and services Content provision Business processes APNIC S

- Traffic monitoring
- End user deployment


Centre	Dual stack and DNS
Information	 DNS is used with both protocol versions to resolve names and IP addresses
Pacific Network	 An dual stack node needs a DNS resolver that is capable of resolving both types of DNS address records
Asia Pa	 DSN A record to resolve IPv4 addresses DNS AAAA record to resolve IPv6 addresses
2	 Dual stack network
🖉 APNIC	 Is an infrastructure in which both IPv4 and Ipv6 forwarding is enabled on routers

Tunnels

Asia

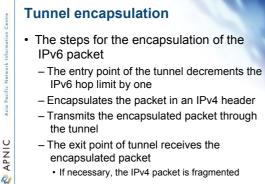
APNIC

- Part of a network is IPv6 enabled
 - Tunnelling techniques are used on top of an existing IPv4 infrastructure and uses IPv4 to route the IPv6 packets between IPv6 networks by transporting these encapsulated in IPv4
 - Tunnelling is used by networks not yet capable of offering native IPv6 functionality
 - It is the main mechanism currently being deployed to create global IPv6 connectivity
- Manual, automatic, semi-automatic
- configured tunnels are available

Tunnelling – general concept	

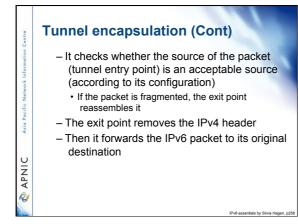
· A tunnel can be configured in four different ways:

- Router to router

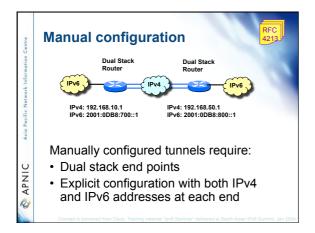

Spans one hop of the end-to-end path between two hosts. Probably the most common method

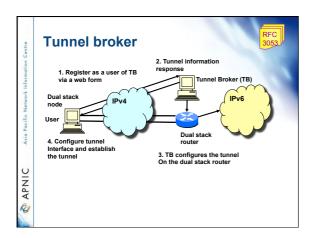
- Host to router

- Spans the first hop of the end-to-end path between two hosts. Found in the tunnel broker model
- Host to host Spans the entire end-to-end path between two hosts
- Router to host

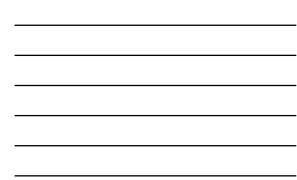

APNIC S

· Spans the last hop of the end-to-end path between two hosts


- encapsulated packet
 - · If necessary, the IPv4 packet is fragmented


IPv6 essentials by Silvia Hagen, p258

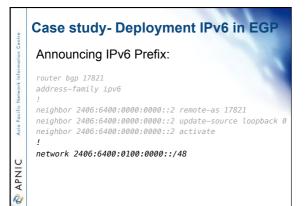
Ein Dill gen ge	Antas Bagina Bagina Refe
(Am)	
No None 28 54.055048 29 54.059870 50 54.059870 51 54.020570 52 54.022597	
13 16,330377 34 17,338315 37 17,340143 37 17,340143 39 18,03551	
41 18, 3183393 42 18, 340563 43 18, 340563 44 39, 340216 45 20, 027003 45 20, 027003 47 20, 020027 48 20, 338525 48 20, 338525	
Type: DF (Ox Distantial Proto Version: 4 Header lengt Differentiat 0000 00	AND AND AND AND AND AND AND AND AND AND AND
Fragment off Time to Thve Protocol: IP mader check Source: 102 Destination	441.0 235



Overview

O APNIC

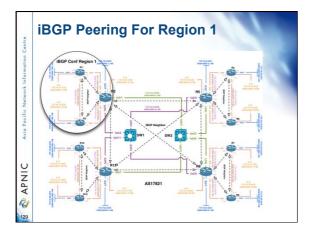
IPv6 Workshop

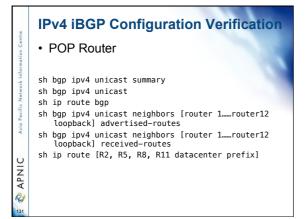

- IPv6 Protocol Architecture Overview
- IPV6 Addressing and Sub-netting
- IPv6 Host Configuration
- Training ISP Network Topology Overview
- Deployment of IPV6 in Interior Gateway
- IPv4 to IPv6 Transition technologies
- Planning & Implementation of IPv6 on Exterior Gateway (BGP)
- Connecting ISP network to an IXP

Case study- Deployment IPv6 in EGP Scenario: BGP4 is used in Training ISP network iBGP is used between internal routers in Training ISP to carry external prefixes (i.e Customer & Global Internet Prefixes) Route Reflector is used to resolve iBGP full mesh scalability issue.

ntre	Case study- Deployment IPv6 in EGP
Information Centre	Scenario:
Network Inform	 Transit service with upstream ASes is configured with eBGP
Asia Pacific Ne	 Customer network from downstream can also be configured with eBGP/Static
APNIC S	 Training ISP is having one native IPv6 transit and one tunnel IPv6 transit with AS45192 & AS131107 (2.35 as dot)
124	(2.35 as dot)

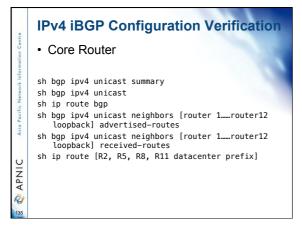
Case study- Deployment IPv6 in EGPBasic BGP Configuration: router bgp 17821 address-family ipv6 no synchronization

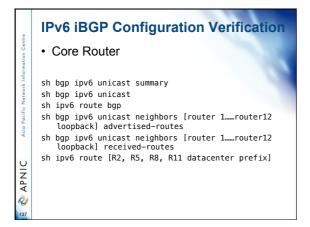

tro	Case study- Deployment IPv6 in EGP
iation Centre	Adding iBGP Neighbor:
Asia Pacific Network Information	router bgp 17821 address-family ipv6 ! neighbor 2406:6400:0000:0000::2 remote-as 17821 neighbor 2406:6400:0000:0000::2 update-source loopback 0 neighbor 2406:6400:0000:0000::2 activate
DINIC 20	iBGP neighbor is always recommended with loopback interface

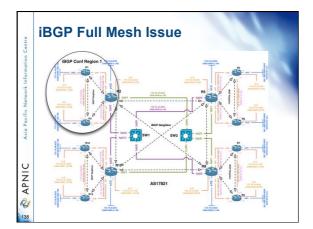

127

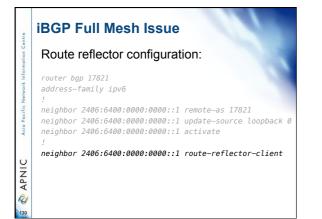
128

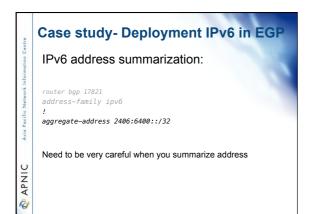
View of the provide the second s

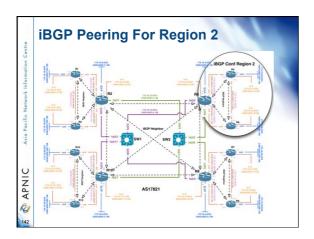

10	IPv4 iBGP Conf POP Router
55 📎 APNIC Asia Pacific Network Information Centre	• Router1 config t router bgp 17821 address-family ipv4 no auto-summary no synchronization neighbor 172.16.15.2 remote-as 17821 neighbor 172.16.15.2 update-source loopback 0 neighbor 172.16.15.3 remote-as 17821 neighbor 172.16.15.3 update-source loopback 0 neighbor 172.16.15.3 update-source loopback 0 neighbor 172.16.15.3 activate network 172.16.16.0 mask 255.255.254.0 exit exit ip route 172.16.16.0 255.255.254.0 null 0 permanent exit wr

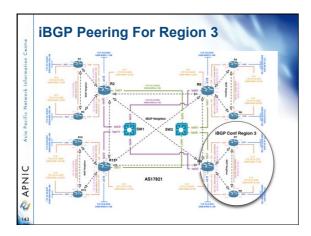

0	IPv6 iBGP Conf POP Router	
Asia Pacific Network Information Centre	<pre>IPv6 iBGP Conf POP Router . Router1 config t router bgp 17821 address-family ipv6 no synchronization neighbor 2406:6400:0000:0000::2 remote-as 17821 neighbor 2406:6400:0000:0000::2 update-source loopback 0 neighbor 2406:6400:0000:00000::3 remote-as 17821 neighbor 2406:6400:0000:0000::3 update-source loopback 0 neighbor 2406:6400:0000:0000::3 update-source loopback 0</pre>	
DINAY 👰 🔢	network 2406:6400:0100:0000::/45 exit exit ipv6 route 2406:6400:0100:0000::/45 null 0 exit wr	

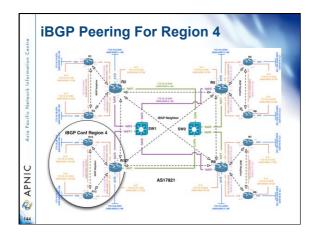

IPv6 iBGP Configuration Verification• POP Router sh bgp ipv6 unicast summary sh bgp ipv6 unicast sh ipv6 route bgp sh bgp ipv6 unicast neighbors [router 1.....router12 loopback] advertised-routes sh bgp ipv6 unicast neighbors [router 1.....router12 loopback] received-routes sh ipv6 route [R2, R5, R8, R11 datacenter prefix]

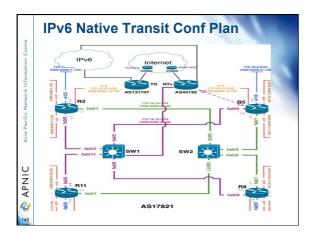

IPv4 iBGP Conf Core Router	
Router2 Configuration	
config t router bpp 17821	
no auto-summary no synchronization	
neighbor 172.16.15.1 remote-as 17821 neighbor 172.16.15.1 update-source loopback 0 neighbor 172.16.15.1 activity	
neighbor 172.16.15.3 remote-as 17821 neighbor 172.16.15.3 update-source loopback 0	
neighbor 172.16.15.5 remote-as 17821	
neighbor 172.16.15.5 activate neighbor 172.16.15.8 remote-as 17821	
neighbor 172.16.15.8 activate	
neighbor 172.16.15.11 update-source loopback 0 neighbor 172.16.15.11 activate	
network 172.16.0.0 mask 255.255.254.0 exit	
ip route 172.16.0.0 255.255.254.0 null 0 permanent exit Wr	
	Router 2 Configuration config t router bp 17821 address-family ipwe no auto-ummary no synchronization meighbor 172.16.15.1 update-source loopback 0 meighbor 172.16.15.3 i update-source loopback 0 meighbor 172.16.15.3 i update-source loopback 0 meighbor 172.16.15.3 outdate-source loopback 0 meighbor 172.16.15.3 settivate meighbor 172.16.15.3 settivate meighbor 172.16.15.4 settivate meighbor 172.16.1


outer2 Configur	ation
config t	
router bgp 17821	
address-family ipv6	
no synchronization	
	0:0000::1 remote-as 17821 0:0000::1 update-source loopback 0
neighbor 2406:6400:000	
	0:0000::3 remote-as 17821
	0:0000::3 update-source loopback 0
neighbor 2406:6400:000	
neighbor 2406:6400:000	0:0000::5 remote-as 17821
	0:0000::5 update-source loopback 0
neighbor 2406:6400:000	
	0:0000::8 remote-as 17821
	0:0000::8 update-source loopback 0
neighbor 2406:6400:000	0:0000::8 activate 0:0000::11 remote-as 17821
	0:0000::11 remote-as 1/821 0:0000::11 update-source loopback 0
neighbor 2406:6400:000	
network 2406:6400:0001	
exit	
exit	
ipv6 route 2406:6400:00	001:0000::/48 null 0
exit	
wr	

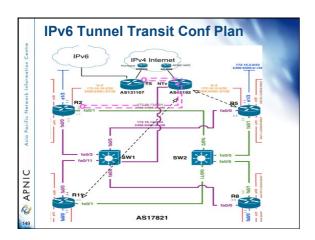




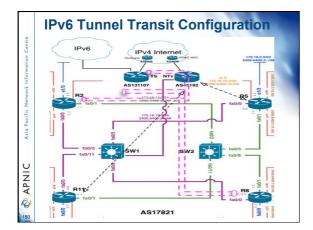




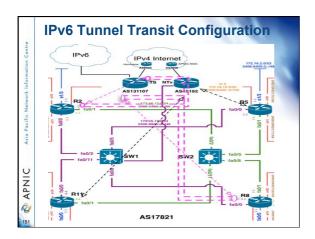
IPv6 IOS Command For eBGP Adding eBGP Neighbor: router bgp 17821 address-family ipv6 ! neighbor 2406:6400:000D:0000::5 remote-as 45192 neighbor 2406:6400:000D:0000::5 activate


eBGP neighbor is always recommended with directly connected interface

APNIC


Centre	IPv6 Native Transit Configuration
	Router5
Asia Pacific Network Information	config t router bgp 17821 address-family ipv6 neighbor 2406:6400:000D:0000::5 remote-as 45192 neighbor 2406:6400:000E:0000::5 activate neighbor 2406:6400:000E:0000::5 remote-as 45192 neighbor 2406:6400:000E:0000::5 activate
DINIC 24	exit exit Wr

Centre	Controlling IPV6 Route Aggregation
mation Cer	IPv6 prefix filter configuration Native Transit:
Asia Pacific Network Information	lpvG prefix-list IPVG-GLOBAL-IN seq 5 permit ::/0 ge 32 le 32 ipvG prefix-list IPVG-GLOBAL-IN seq 10 permit ::/0 ge 48 le 48
Pacific Net	ipv6 prefix-list IPV6-GLOBAL-OUT seq 5 permit ::/0 ge 32 le 32 ipv6 prefix-list IPV6-GLOBAL-OUT seq 10 permit ::/0 ge 48 le 48
Asia	router bgp 17821 address-family ipv6
AIC	<pre>neighbor 2406:6400:0000:0000::5 prefix-list IPV6-GL0BAL-IN in neighbor 2406:6400:000D:0000::5 prefix-list IPV6-GL0BAL-OUT out exit</pre>
APNIC	exit exit Clear bap ipvő unicast 2406:6400:000D:0000::5 soft in
NO	clear byp ipvo unicast 2400.0400:000D:0000::5 SOIL IN



6 to 4 Tunnel Configuration

IOS Command for Tunnel Interface:

Router2 config t interface Tunnel0 tunnel source 172.16.12.1 tunnel destination 192.168.1.1 tunnel mode ipv6ip ipv6 address 2406:6400:F:40::2/64 ipv6 enable

Asia

APNIC S

152

Asia

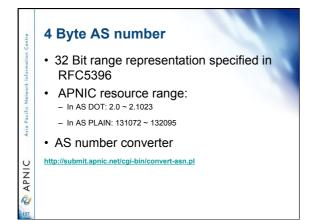
APNIC S

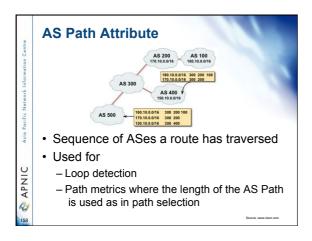
6 to 4 Tunnel Configuration

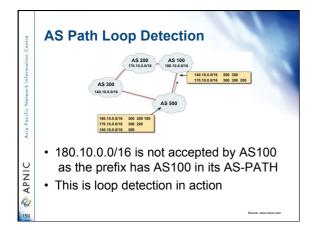
IOS Command for Tunnel Peering:

router bgp 17821 address-family ipv6 neighbor 2406:6400:F:40::1 remote-as 23456 neighbor 2406:6400:F:40::1 activate

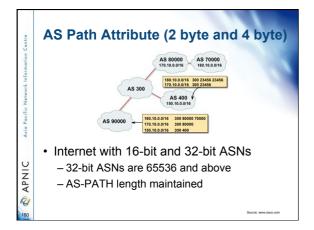
0	Controlling IPV6 Route Aggregation
iion Centre	IPv6 prefix filter configuration Tunnel Transit:
Network Information	config t ipv6 prefix-list IPV6-GLOBAL-IN seq 5 permit ::/0 ge 32 le 32 ipv6 prefix-list IPV6-GLOBAL-IN seq 10 permit ::/0 ge 48 le 48
	! ipv6 prefix-list IPV6-GLOBAL-OUT seq 5 permit ::/0 ge 32 le 32 ipv6 prefix-list IPV6-GLOBAL-OUT seq 10 permit ::/0 ge 48 le 48
Asia Pacific	router bgp 17821 address-family ipv6
0	neighbor 2406:6400:F:40::1 prefix-list IPV6-GLOBAL-IN in neighbor 2406:6400:F:40::1 prefix-list IPV6-GLOBAL-OUT out
APNIC	exit exit exit
154	clear bgp ipv6 unicast 2406:6400:F:40::1 soft in clear bgp ipv6 unicast 2406:6400:F:40::1 soft out

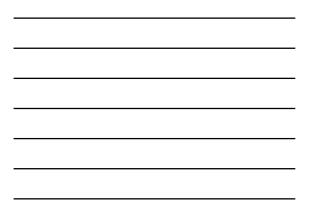

AS Numbers • Two Ranges: -[0-65535] are the original 16 bit - [65536 - 4294967295] are the new 32 bit Usages

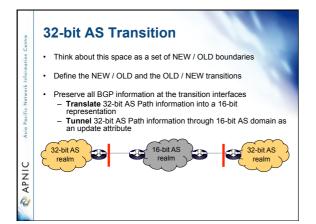

-0 and 65535 Reserved

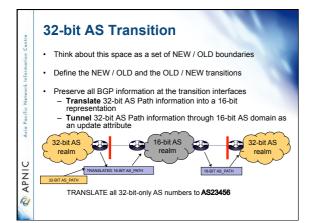

Asia

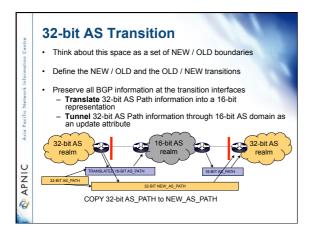
- 1 to 64495 Public Internet
- 64496 to 64511 Documentation RFC5398
- 64512 to 65534 Private use **APNIC**
 - 23456 represent 32 Bit range in 16 bit world
 - 65536 to 65551 Documentation RFC 5398
 - 65552 to 4294967295 Public Internet

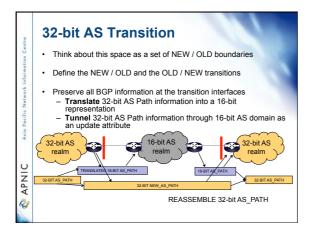

	32 bit AS number representation
Centre	AS DOT
tion	 Based upon 2-Byte AS representation
orma	– <higher2bytes decimal="" in=""> . <lower2bytes decimal="" in=""></lower2bytes></higher2bytes>
k Inf	 For example: AS 65546 is represented as 1.10
Iwor	 Easy to read, however hard for regular expressions
Ne	 There is a meta character "." in regular expression
Asia Pacific Network Information	 i.e For example, a.c matches "abc", etc., but [a.c] matches only "a", ".", or "c".
Asi	AS PLAIN
	 ASPLAIN IETF preferred notation
AIC	 Continuation on how a 2-Byte AS number has been represented historically
🖉 APNIC	 Notation: The 32 bit binary AS number is translated into a Single decimal value Example: AS 65546
R	 Total AS Plain range (0 – 65535 - 65,536 - 4,294,967,295)
156	

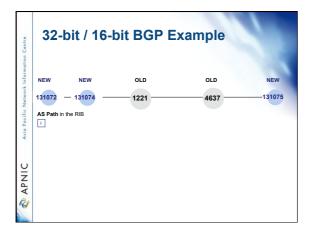


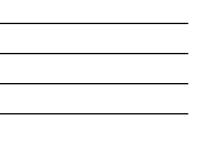


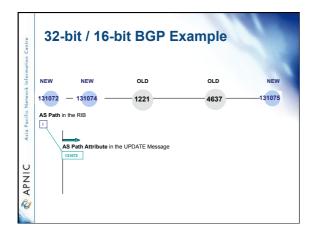


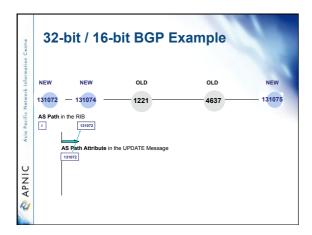


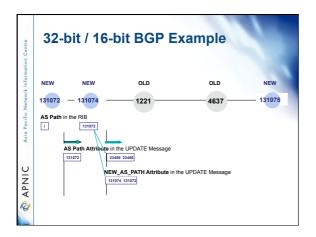


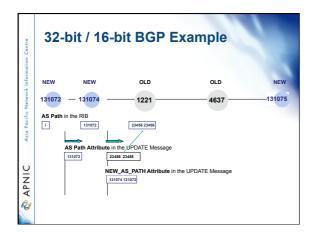


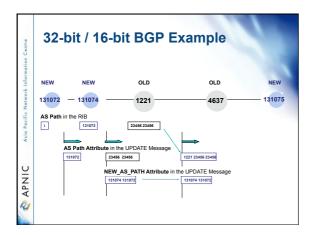


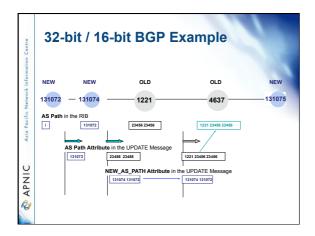


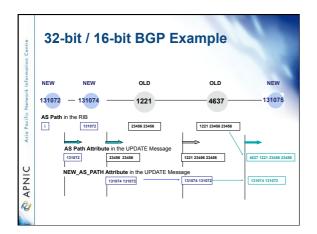


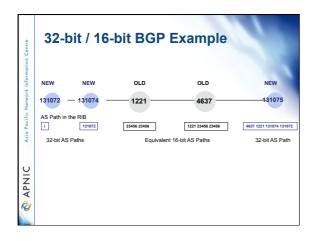


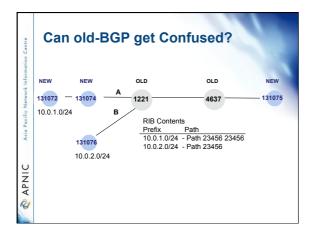




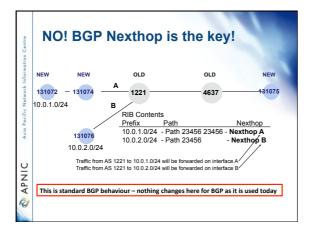


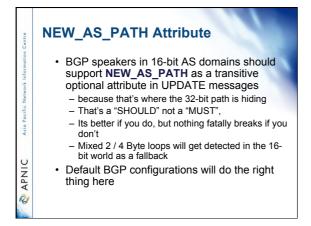






tion Centre	32-bit / 16-bit BGP Example				
Information	NEW	NEW	OLD	OLD	NEW
Network	131072	— 131074 —	1221	4637	131075
Asia Pacific	i i	131072	23456 23456	1221 23456 23456	4637 1221 131074
Asia	L	_→ L	-		
	AS Path Attribute in the UPDATE Message				
		131072 23	456 23456	1221 23456 23456	4637 1221 23456 23456
U	NEW_AS_PATH Attribute in the UPDATE Message				
Z		13	1074 2131072	131074 131072	+ 131074 131072
APNIC					
R					





n Centre	NEW_AGGREGATOR Attribute
work Information	 BGP speakers in 16-bit AS domains should support NEW_AGGREGATOR as a transitive optional attribute in UPDATE messages
Asia Pacific Network	 because that's where the 32-bit Aggregator AS is hiding
Asia Pa	- That's a "SHOULD" not a "MUST", by the way
	 Its better if you do, but nothing fatally breaks if you don't
APNIC	 Default BGP configurations should do the right thing here
R	

AS 23456

acifie

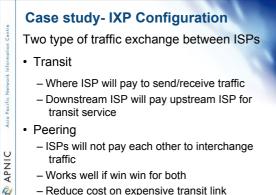
Asia


APNIC S

180

 AS 23456 is going to appear in many 16-bit AS paths – both origin and transit

• This is not an error – it's a 16-bit token holder for a 32-bit AS number



Overview

O APNIC

IPv6 Workshop

- IPv6 Protocol Architecture Overview
- IPV6 Addressing and Sub-netting
- IPv6 Host Configuration
- Training ISP Network Topology Overview
- Deployment of IPV6 in Interior Gateway
- IPv4 to IPv6 Transition technologies
- Planning & Implementation of IPv6 on Exterior Gateway (BGP)
- Connecting ISP network to an IXP

- Works well if win win for both
 - Reduce cost on expensive transit link

IX Peering Model

Asia

O APNIC

APNIC S

Asia

BLPA (Bi-Lateral Peering Agreement)

- IX will only provide layer two connection/switch port to ISPs
 - Every ISPs will arrange necessary peering arrangement with others by their mutual business understanding.

• MLPA (Multi-Lateral Peering Agreement) – IX will provide layer two connection/switch port to

- ISPs
- Each ISP will peer with a route server on the IX.
- Route server will collect and distribute directly connected routes to every peers.

IXP Peering Policy

- BLPA is applicable where different categories of ISPs are connected in an IX
 - Large ISPs can choose to peer with large
 - ISPs (base on their traffic volume) – Small ISPs will arrange peering with small
 - ISPs
- · Would be preferable for large ISPs
 - They will peer with selected large ISPs (Equal traffic interchange)
- Will not loose business by peering with small ISP

IX Peering Policy

- MLPA model works well to widen the IX scope of operation (i.e national IX).
- Easy to manage peering
 - Peer with the route server and get all available local routes.
 - Do not need to arrange peering with every ISPs connected to the IX.
- Unequal traffic condition can create not intersected situation to peer with route server

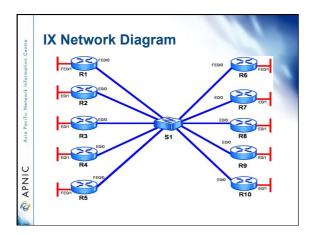
IX peering Policy

Asia

APNIC S

APNIC

Asia


APNIC

- Both peering model can be available in an IX.
- Member will select peering model i.e either BLPA or MLPA (Route Server Peering)
- IX will provide switch port
- Mandatory MLPA model some time not preferred by large ISP (Business Interest)
 - Can create not interested situation to connect to an IX

IX Operating Cost Access link Link maintenance Utility Administration

Cost Model

- Not for profit
- Cost sharing
- Membership based
- Commercial IX

Case study- IXP Configuration

Required global & interface commands to enable IPv6

Router(Config)#ipv6 unicast-routing Router(Config)#ipv6 cef (optional)

 Configure IPv6 address on interface Router(Config-if)#ipv6 address 2001:0df0:00aa::1/64 Router(Config-if)#ipv6 enable

 Verify IPv6 configuration Router#sh ipv6 interface fa0/0

APNIC

R

Asia

APNIC

Verify connectivity

Router#ping 2001:0df0:00aa::1

Case study- IXP Configuration

Required **BGP** commands to enable IPv6 routing
Router(config)# router bgp 1

Router2(config-router)#bgp router-id 10.0.0.1 (if no 32 bit address on any interface)

Router(config-router)# address-family ipv6 Router(config-router-af)# no synchronization

Router(config-router-af)# neighbor 2001:0df0:00aa::1 remote-as 2 (EBGP) Router(config-router-af)#neighbor 2001:0df0:00aa::1 activate Router(config-router-af)# network 2001:0df0:00aa::/48

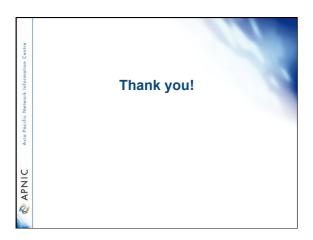
Verify BGP IPv6 configuration

Router#sh bgp ipv6 unicast summary (summarized neighbor list) Router#sh bgp ipv6 unicast (BGP database)

Router#sh ipv6 route bgp (BGP routing table)

Case study- IXP Configuration		
ormation Ce	Required command to add IX prefix filter	
Inf	Create prefix filter in global mode	
Pacific Network	Router(config)#ipv6 prefix-list AS1 seq 2 permit 2001:0df0:aa:: /48	
Asia Pa	 Apply prefix filter in BGP router configuration mode Router(config-router)# address-family ipv6 	
υ	Router(config-router-af)#neighbor 2001:0df0:aa::1 prefix-list AS1	
APNIC	Router(config-router-af)#neighbor 2001:0df0:aa::1 prefix-list AS1 out	

Case study- IXP Configuration


Controlling routing update traffic (Not data traffic)

Asia F

APNIC S

- 1. Incoming routing update (Will control outgoing data traffic)
- 2. Outgoing routing update (Will control incoming data traffic)

Centre	Questions?			
Asia Pacific Network Information				
Asia Pacific Ne				
🖉 APNIC				

