
Curso IPv6 WALC 2010 Santa Cruz – Bolivia 11 al 15 Octubre 2010

Alvaro Vives (alvaro.vives@consulintel.es)

Contenido

11. IPv6 sobre MPLS

11. IPv6 sobre MPLS

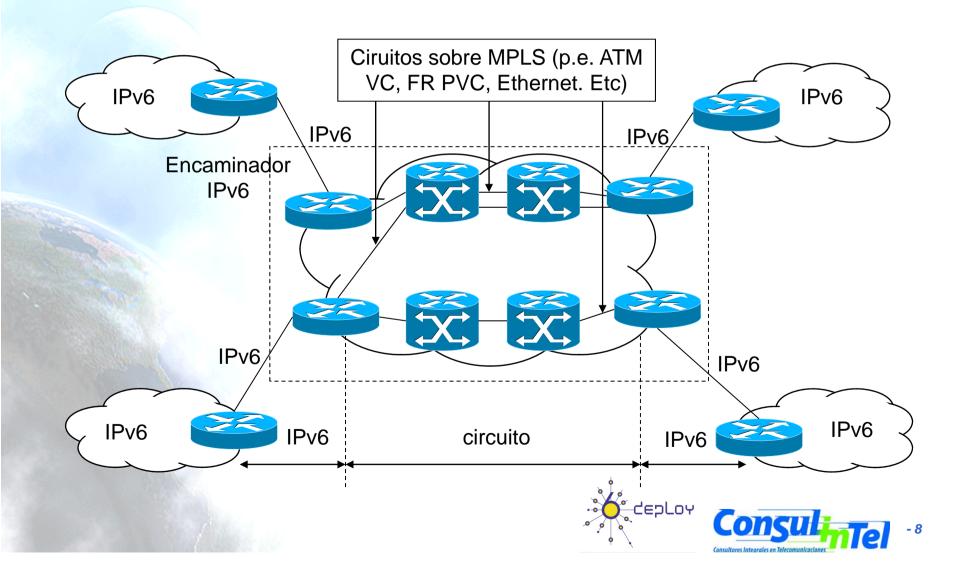
IPv6 sobre MPLS (1)

- Muchos ISPs han desplegado en su core MPLS
 - Ingeniería de tráfico
 - Mejorar la QoS ofrecida
 - Despliegue de VPNs
 - Etc.
- El despliegue de IPv6 en dichas redes no sería viable si:
 - reconfiguración actual del despliegue MPLS para IPv4
 - adquisición de nuevo equipamiento IPv6-MPLS
- Se han desarrollado soluciones
 - mantener la infraestructura actual MPLS-IPv4
 - añadir soporte IPv6 con actualizaciones mínimas sin necesitar cambiar dicha configuración

IPv6 sobre MPLS (2)

- Las opciones más comunes de IPv6 sobre MPLS permiten que dominios aislados de IPv6 se comuniquen entre si sobre un backbone de MPLS IPv4
- Este tipo de implementación
 - Requiere de pocas actualizaciones/cambios en la infraestructura del backbone
 - No requiere la reconfiguración de los encaminadores de core, ya que el reenvió de trafico se hace basado en la etiquetas mas que en IP
- Todo esto resulta en una estrategia muy efectiva (coste, trabajo, tiempo) para la instalación y uso de
 - IPv6 con IPv4 Virtual Private Network (VPN)
 - Ingeniería de trafico MPLS (MPLS-TE)

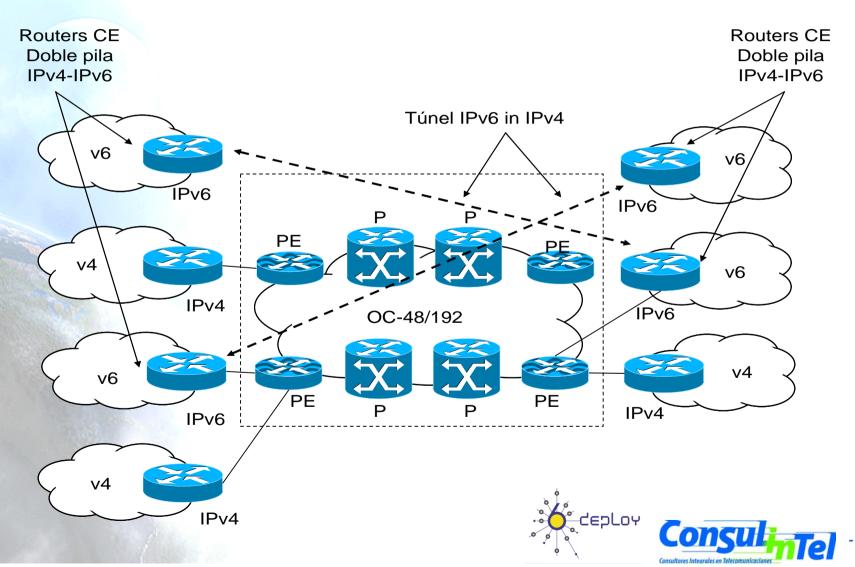
IPv6 sobre MPLS (3)


- Red MPLS/IPv4 desplegada -> estrategias posibles:
- 1. Encaminamiento IPv6 nativo: Sin hacer uso de MPLS. Está sujeto al soporte IPv6 disponible en todos los dispositivos de la red y requiere configuración de toda la red. No aprovecha las ventajas de MPLS.
- 2. Encaminamiento IPv6 nativo y MPLS para IPv6: Replicar el esquema existente MPLS/IPv4 para el tráfico IPv6. Está sujeto al soporte IPv6 y MPLS disponible en todos los dispositivos de la red y requiere configuración de toda la red.
- 3. Aprovechar la infraestructura MPLS/IPv4 para el reenvío de tráfico IPv6: Bajo este esquema se pueden diferenciar varios métodos:
 - **3.1 IPv6 Provider Edge Routers (6PE)**: Los 6PE o encaminadores del borde de la nube MPLS/IPv4 deben ser de doble-pila y soportar Multiprotocol-BGP
 - 3.2 Circuitos de Transporte sobre MPLS: Se crean interfaces dedicadas mediante circuitos estáticos configurados sobre MPLS (AToM Any Transport over MPLS o EoMPLS Ethernet over MPLS). No requiere cambios de configuración en los encaminadores de la nube MPLS/IPv4. Este es un mecanismo estático y no escalable.
 - 3.3 Túneles en los Encaminadores del Usuario: Los encaminadores de los usuarios son los encargados de establecer túneles IPv6-en-IPv4 entre las redes IPv6, de forma totalmente transparente a la red MPLS/IPv4. Este es un mecanismo estático y no escalable.

IPv6 sobre Circuitos de Transporte sobre MPLS (1)

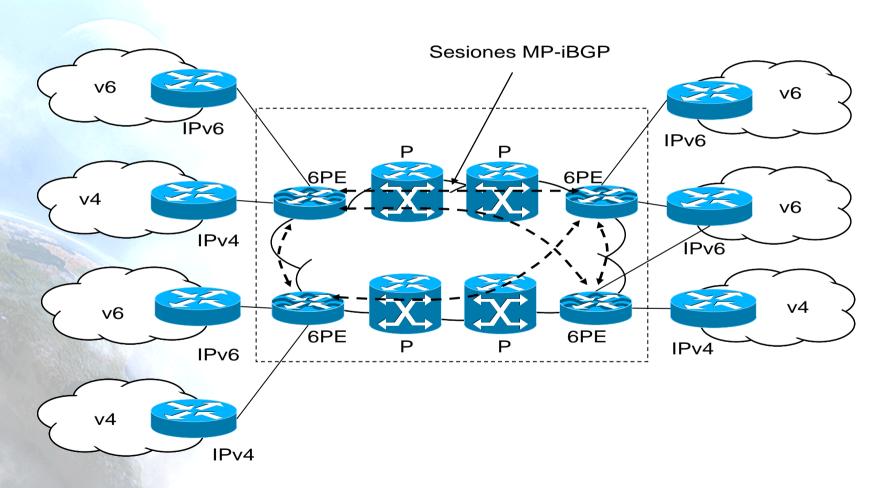
- Usar cualquier circuito de transporte para la instalación de IPv6 sobre redes MPLS IPv4:
 - no tiene ningún impacto en la operación o en la infraestructura de MPLS
 - no requiere de cambios en la configuración de los encaminadores de core o de provider edge
- La comunicación entre los dominios IPv6 remotos:
 - se ejecuta nativamente con IPv6 sobre links dedicados
 - los mecanismos subyacentes son completamente trasparentes a IPv6
- El tráfico IPv6 es encapsulado (túnel) sobre cualquier transporte sobre MPLS
 - Por ejemplo con MPLS/AToM o EoMPLS, con routers conectados con enlaces
 OC-3 o Ethernet respectivamente

IPv6 sobre Circuitos de Transporte sobre MPLS (2)


IPv6 con Túneles en los Customer Edge (CE) Routers (1)

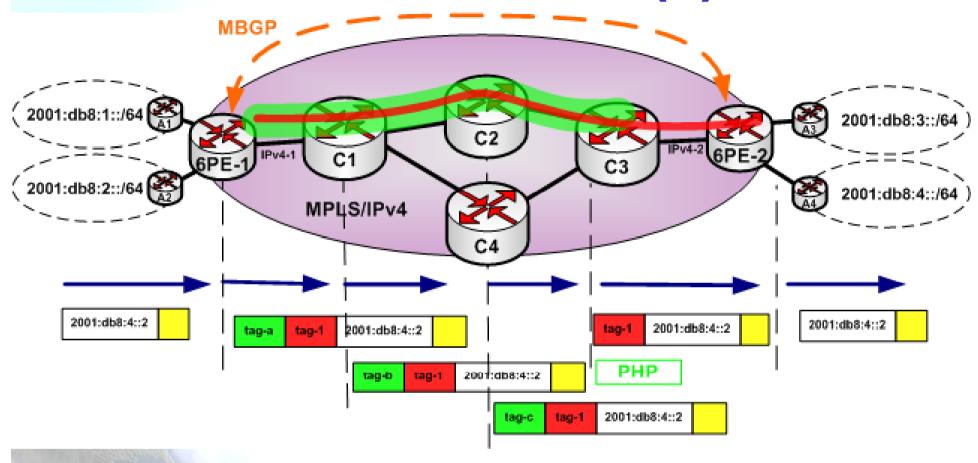
- Usar túneles en los CE routers es la forma más simple de instalar IPv6 sobre redes MPLS
- La comunicación entre los dominios IPv6 remotos
 - Usa mecanismos estándares de túneles
 - Requiere que los CE routers se configuren con pila doble IPv4/IPv6
- La limitación esta relacionada con problemas de escalabilidad en redes grandes, ya que la configuración manual de túneles en full mesh en los CE routers seria muy laboriosa

IPv6 con Túneles en los Customer Edge (CE) Routers (2)



IPv6 con 6PE (1)

- Los dominios IPv6 remotos se comunican a través de un Core de MPLS IPv4
 - Usando MPLS label switched paths (LSPs)
 - Aprovechando en el PE las extensiones Multiprotocol Border Gateway Protocol (MBGP) sobre IPv4 para intercambiar información de ruteo IPv6
- Los PEs tienen pila doble IPv4/IPv6
 - Usan direcciones IPv6 mapeadas a IPv4 para el conocer la "alcanzabilidad" de los prefijos IPv6



IPv6 con 6PE (2)

IPv6 con 6PE (3)

6PE-1 aprende de 6PE-2 a través de MBGP lo siguiente:

Prefijo Next-Hop Tag-IPv	O
2001:db8:3::/64 ::FFFF:IPv4-2 tag-2	
2001:db8:4::/64 ::FFFF:IPv4-2 tag-1	•

Gracias!!

Contacto:

– Alvaro Vives (Consulintel):

alvaro.vives@consulintel.es

6DEPLOY Project: http://www.6deploy.org

The IPv6 Portal: http://www.ipv6tf.org

