CEPLOY

IPv6 Support in the DNS

Contributions

Main authors

- Miguel Baptista, FCCN, Portugal
- Carlos Friaças, FCCN, Portugal
- Laurent Toutain, ENST-Bretagne IRISA, France
- Bernard Tuy, Renater, France

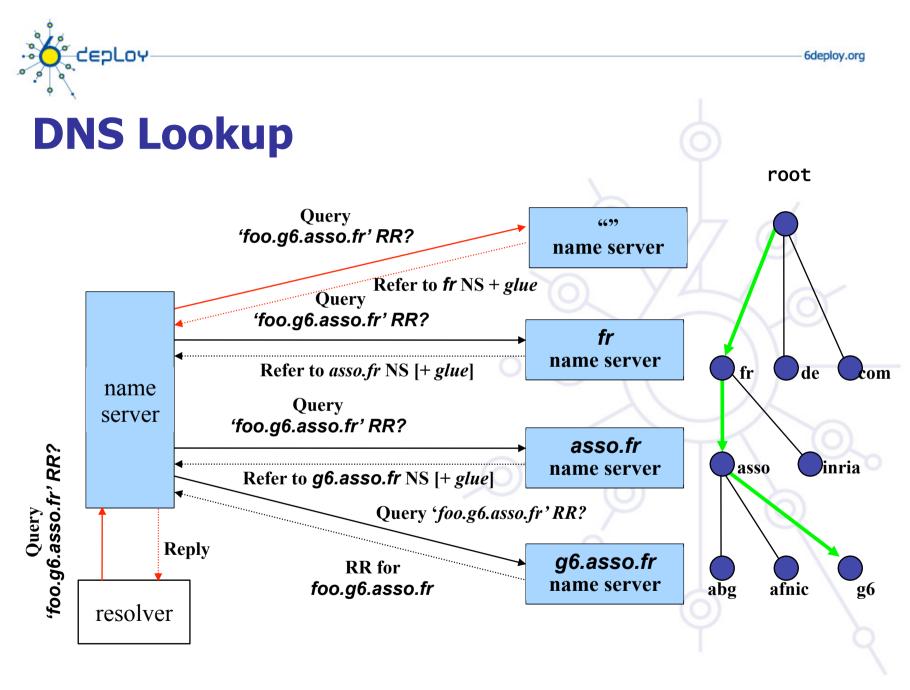
Contributors

- Octavio Medina, ENST-Bretagne, France
- Mohsen Souissi, AFNIC, France
- Vincent Levigneron, AFNIC, France
- Thomas Noel, LSIIT, France
- Alain Durand, Sun Microsystems, USA
- Alain Baudot, France Telecom R&D, France
- Bill Manning, ISI, USA
- David Kessens, Qwest, USA
- Pierre-Emmanuel Goiffon, Renater, France
- Jérôme Durand, Renater, France
- Mónica Domingues, FCCN, Portugal
- Ricardo Patara, LACNIC, Uruguay

Prerequisites

You should have followed previously the modules:

- 010-IPv6 Introduction
- 020-IPv6 Protocol
- 030-IPv6 Addressing


Agenda

How important is the DNS? **DNS Resource Lookup DNS Extensions for IPv6** Lookups in an IPv6-aware DNS Tree **About Required IPv6 Glue in DNS Zones** The Two Approaches to the DNS **DNS IPv6-capable software IPv6 DNS and root servers DNSv6** Operational Requirements & Recommendations

How important is the DNS?

- Getting the IP address of the remote endpoint is necessary for every communication between TCP/IP applications
- Humans are unable to memorize millions of IP addresses (specially IPv6 addresses)
- To a larger extent : the Domain Name System provides applications with several types of resources (domain name servers, mail exchangers, reverse lookups, ...
- They need
 - Hierarchy
 - Distribution
 - Redundancy

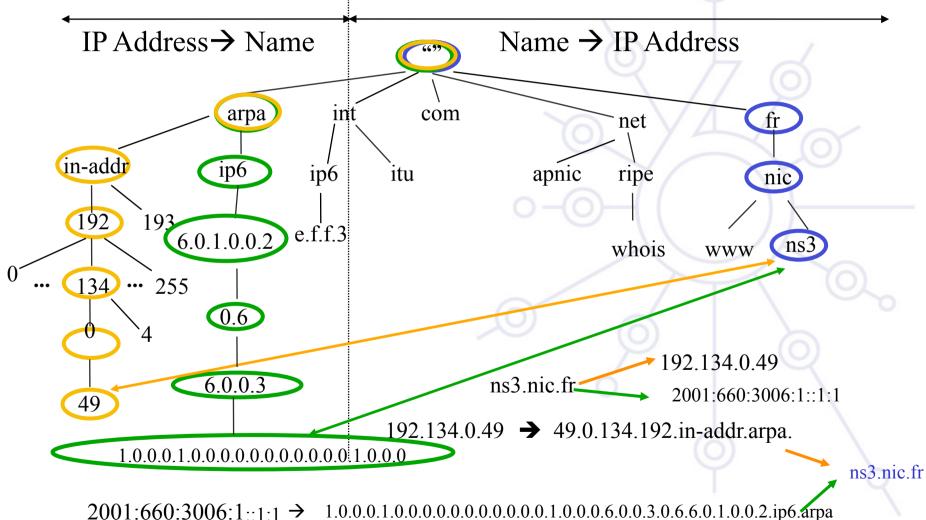
DNS Extensions for IPv6

```
RFC 1886 → RFC 3596
```

AAAA : forward lookup ('Name \rightarrow IPv6 Address'): Equivalent to 'A' record

Example:

ns3.nic.fr.	IN	Α	192.134.0.49
	IN	AAAA	2001:660:3006:1::1:1


PTR : reverse lookup ('IPv6 Address → Name'): Reverse tree equivalent to in-addr.arpa Main tree: ip6.arpa

Former tree: ip6.int (deprecated)

Example: \$ORIGIN 1.0.0.0.6.0.0.3.0.6.6.0.1.0.0.2.ip6.arpa. 1.0.0.0.1.0.0.0.0.0.0.0.0.0.0 PTR ns3.nic.fr.

Lookups in an IPv6-aware DNS Tree

About Required IPv6 Glue in DNS Zones

When the DNS zone is delegated to a DNS server (among others) contained in the zone itself

Example: In zone file rennes.enst-bretagne.fr

@	IN	SOA (20050402) 86400 3600 3600000	rsm.rennes 1;serial ;refresh ;retry ;expire}	jne.fr.		
		IN	NS	rsm		
		IN	NS		nst-bretagne.fr.	
[]						
ipv6	IN	NS	rhadamant	he.ipv6		
	IN	NS	ns3.nic.fr.			
	IN	NS	rsm			
; rhadamar	nthe.ipv6		IN IN	A AAAA	192.108.119.134 2001:660:7301:1::1	
[]			TIN		2001.000.7 501.1.1	

IPv4 glue (A 192.108.119.134) is required to reach rhadamanthe over IPv4 transport IPv6 glue (AAAA 2001:660:7301:1::1) is required to reach rhadamanthe over IPv6 transport

IPv6 DNS and root servers (

DNS root servers are critical resources

- **13 roots** « around » the world (#10 in the US)
 - As of 04/02/2008, 6 root servers are IPv6 enabled
 - and reachable via IPv6 networks
 - A, F, H, J, K & M
- Need for mirror-like function for the root name servers
 - To be installed in other locations (EU, Asia, Africa, ...)

IPv6 DNS and root servers /2 (

New technique : anycast DNS server

- To build a clone from the primary master
- Containing the same information (files)
- Using the same IP address(es)

Such anycast servers have proved a successful strategy and a lot of them are already installed :

- F root server: Ottawa, Paris(Renater), Hongkong, Lisbon (FCCN)...
- M root server: Tokyo, Paris (Renater), Seoul
- Look at http://www.root-servers.org for the complete and updated list.

The Two Approaches to the DNS

The DNS seen as a database

- Stores different types of Resource Records (RRs)
 - SOA, NS, A, AAAA, MX, PTR, ...
- \Rightarrow DNS data is independent of the IP version (v4/v6) the DNS server is running on

The DNS seen as a TCP/IP application

- The service is accessible in either transport modes (UDP/TCP)
- and over either IP versions (v4/v6)
- ⇒Information given over both IP versions must be consistent

DNS IPv6-capable software (1)

BIND (Resolver & Server)

- http://www.isc.org/products/BIND/
- BIND 9 (avoid older versions)

On Unix distributions

• Resolver Library (+ (adapted) BIND)

NSD (authoritative server only)

http://www.nlnetlabs.nl/nsd/

Microsoft Windows (Resolver & Server)

- It has been reported that Windows XP resolver cannot interact with DNS servers over an IPv6 transport.
- It needs an IPv4 network to query a DNS server.
- => This is no more an issue for Windows Vista users.

DNS IPv6-capable software (2)

Microsoft Windows XP default resolver only queries over IPv4 transport:

- Install BIND 9 for Windows XP and uses BINDs resolver; or
- Have a local dual stack DNS server.
 - Via DHCP, assign IPv4 address
 - advertise the DNS server IPv4 address to XP users.

DNSv6 Operational Requirements & Recommendations

The target today is not the transition from an IPv4only to an IPv6-only environment

How to get there?

- Start by testing DNSv6 on a small network and get your own conclusion that DNSv6 is harmless, but remember:
 - The server (host) must support IPv6
 - And DNS server software must support IPv6
- Deploy DNSv6 in an incremental fashion on existing networks
- DO NOT BREAK something that works fine (production IPv4 DNS)!

Ø CEPLOY 0 O Questions ... 16

Extra Slides

CEPLOY

0

One of IANA's functions is the DNS top-level delegations

Changes in TLDs (e.g ccTLDs) has to be approved and activated by IANA

Introduction of IPv6-capable nameservers at ccTLDs level has to be made through IANA

TLDs and IPv6 (2)

How many servers supporting a domain should carry resource records information ?

- Usually conservative approaches
- Preferably two name servers
- => located in geographically different areas

Don't use long server names.

- \Rightarrow 1024 bytes limit in DNS response datagrams
 - Some ccTLDs had to renamed their servers
 - same philosophy used by root servers

TLDs and IPv6 (3)

As of April 14th 2008

- 13 out of 21 TLDs
 - with at least one IPv6 enabled DNS server (glued)
- 102 out of 252 ccTLDs
 - with at least one IPv6 enabled DNS server (glued)

Servers: 124 different ones, worldwide