

János Mohácsi IPv6 workshop, Skopje 29-30 June 2011

Copy ...Rights

- This slide set is the ownership of the 6DEPLOY project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorisation
- Using part of this material must mention 6DEPLOY courtesy
- PDF files are available from www.6deploy.eu
- Looking for a contact ?
 - Mail to : martin.potts@martel-consulting.ch
 - Or bernard.tuy@renater.fr

Why is there a problem?

- If you believe that encryption (or firewalls or Intrusion Detection Systems) are the answer to all your security problems, then you probably asked the wrong question.
 - Security is about securing a system
 - Security is a process NOT a product
 - Over-concentration on technology is deeply naïve
 - However if you do major changes, like IPv4-IPv6, you must ensure you have introduced new holes

What is new with IPv6?

- Security was considered from the start in IPv6
- Some of the key improvements:
 - IPsec useable with the core protocols
 - Cryptographically Generated Addresses (CGA)
 - SEcure Neighbor discovery (SEND)
 - Protocol for Authentication and Network Access
 - Making intrusion harder

Topics in this module

- Threats to be Countered in IPV6
 - Scanning Gateways and Hosts for weakness
 - Scanning for Multicast Addresses
 - Unauthorised Access Control
 - Protocol Weaknesses
 - Distributed Denial of Service
 - Transition Mechanisms
 - Worms/Viruses
 - There are already worms that use IPv6
 - e.g. Rbot.DUD
- Techniques:
 - Firewalls

Scanning Gateways and Hosts

- Subnet Size is much larger
 - About ~28 years to scan a /64 subnet@1M addresses/sec
- But...
 - NMAP does NOT support IPv6 network scanning
 - IPv6 Scanning methods are changing
 - DNS based, parallelised scanning, common numbering
 - Compromising a router at key transit points
 - Can discover addresses in use
 - Scan from router?

Scanning Multicast Addresses

- New Multicast Addresses IPv6 supports new multicast addresses enabling attacker to identify key resources on a network and attack them
 - E.g. Site-local all DHCP servers (FF05::5), and All Routers (FF05::2)
 - Addresses must be filtered at the border in order to make them unreachable from the outside
 - To prevent smurf type of attacks: IPv6 specs forbids the generation of ICMPv6 packets in response to messages to global multicast addresses that contain requests

Security of IPv6 addresses

- Cryptographically Generated Addresses (CGA) IPv6 addresses [RFC3972]
 - Host-ID part of address is an encoded hash
 - Binds IPv6 address to public key
 - Used for securing Neighbor Discovery [RFC3971]
 - Is being extended for other uses [RFC4581]
- Private addresses as defined [RFC 4941]
 - prevents device/user tracking from
 - makes accountability harder
- Host-ID could be token to access network

Neigbor Discovery (cf Address Resolution **Protocol**)

- Can suffer similar problems of ARP cache poisoning
- Stronger solution with SEcure Neighbor Discovery (SEND) [RFC3971] uses CGA
 - Available in IOS-12.4(24)T, and JUNOS in 9.4 Linux/BSD (DoCoMo's SEND Project)
- DHCPv6 with authentication is possible
- ND with IPSec also possible

- DoS Duplicate Address Detection (DAD)
 - Nodes usually create own address (EUI 64, Privacy Extensions)
 - Optimistic DAD "sorry, the address is mine, choose another one"
- Neighbor Cache table overload
 - Big address space (64 bits 1.8e+19 address)
 - Many records in the neighbor cache for non existing clients

Problems with SLAAC

- Rogue RAs a documented in [RFC 6104]
- Possible solutions:
- 1. RA snooping RA Guard as defined [RFC 6105]
- ACL on switches
- Usage of SEND
- 4. Using RA router preference use high
- 5. Layer 2 admission control like 802.1X
- 6. Host based filtering unwanted RAs
- 7. Deprecation tools:
 - 1. rafixd:
 - http://www.kame.net/dev/cvsweb2.cgi/kame/kame/kame/rafixd/
 - z. ramond: http://ramond.sourceforge.net/
- 8. Using DHCPv6 with prefix and default gateway option

DHCPv6 problems

- Fake DHCPv6 server
 - Define who can act as DHCP server

DHCPv6 problems and solutions

- SAVI (draft-ietf-savi-dhcp-07, November 2010)
 - Complex solution solving: fakeRA,DHCPv4 and DHCPv6

Poor men's RA Guard

ACL to filter RA and DHCPv6:

```
ipv6 access-list block-ra-dhcp
  10 deny icmp any any 134 0
  20 deny udp any eq 547 fe80::/64 eq 546
  30 permit ipv6 any any
exit
```

Apply for the interface:

```
interface 1-44
  ipv6 access-group block-ra-dhcp in
```


Unauthorised Access Control

- Policy implementation in IPv6 with Layer 3 and Layer 4 is still done in firewalls
- Some design considerations!
 - Filter site-scoped multicast addresses at site boundaries
 - Filter IPv4 mapped IPv6 addresses on the wire

Unauthorised Access control

- Non-routable + bogon (unallocated) address filtering slightly different
 - □ in was IPv4 easier deny non-routable + bogons

□ in IPv6 simpler to permit legitimate (almost)

	<u> </u>		<u> </u>	
Action	Src	Dst	Src port	Dst port
deny	2001:db8::/32	host/net	0-(0)—((
permit	2001::/16	host/net	any	service
permit	2002::/16	host/net	any	service
permit	2003::/16	host/net	any	service
Deny	3ffe::/16	host/net	any	service
deny	any	any		9

Doc prefix - NO

6to4 - YES

6bone - NO

Consult for non exisiting addresses at:
http://www.space.net/~gert/RIPE/ipv6-filters.html

IPv6: Optional headers

IPv6 Header Next Header = TCP

TCP Header + DATA

IPv6 Header Next Header = Routing Routing Header
Next Header
= TCP

TCP Header + DATA

IPv6 Header Next Header = Routing Routing Header
Next Header
= Fragment

Fragment Header
Next Header
= TCP

TCP Header + DATA

Problems with extension headers

- Routing header (RH0, deprecated by RFC 5095)
- Fragmentation how can you determine in the fragment the upper layer protocols?
- Extension header tricking (reorder, long chains of headers, overlapping fragments)
- Difficult to filter!

deny ipv6 any any log undetermined transport

L3- L4 Spoofing

- While L4 spoofing remains the same, IPv6 address are globally aggregated making spoof mitigation at aggregation points easy to deploy
- Simpler to protect due to IPv6 address hierarchy
- However host part of the address is not protected
 - You need IPv6 <- >MAC address (user) mapping for accountability!

Amplification (DDoS) Attacks

- There are no broadcast addresses in IPv6
 - This would stop any type of amplification attacks that send ICMP packets to the broadcast address
 - Global multicast addresses for special groups of devices, e.g. link-local addresses, etc.
- IPv6 specifications forbid the generation of ICMPv6 packets in response to messages to global multicast addresses
 - Many popular operating systems follow the specification
 - Still uncertain on the danger of ICMP packets with global multicast source addresses

Mitigation of IPv6 amplification

- Be sure that your host implementations follow the ICMPv6 spec [RFC 4443]
- Implement Ingress Filtering
 - Defeats Denial of Service Attacks which employ IP Source Address Spoofing [RFC 2827]
- Implement ingress filtering of IPv6 packets with IPv6 multicast source address

Mixed IPv4/IPv6 environments

- Some security issues with transition mechanisms
 - Tunnels often interconnect networks over areas supporting the "wrong" version of protocol
 - Tunnel traffic often not anticipated by the security policies. It may pass through firewall systems due to their inability to check two protocols in the same time
- Do not operate completely automated tunnels
 - Avoid "translation" mechanisms between IPv4 and IPv6, use dual stack instead
 - Only authorised systems should be allowed as tunnel end-points

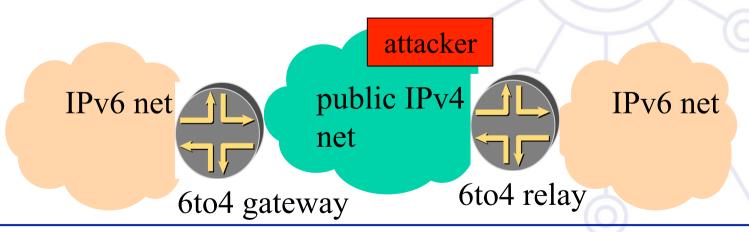
IPv6 transition mechanisms

- ~15 methods possible in combination
- Dual stack:
 - enable the same security for both protocol

Tunnels:

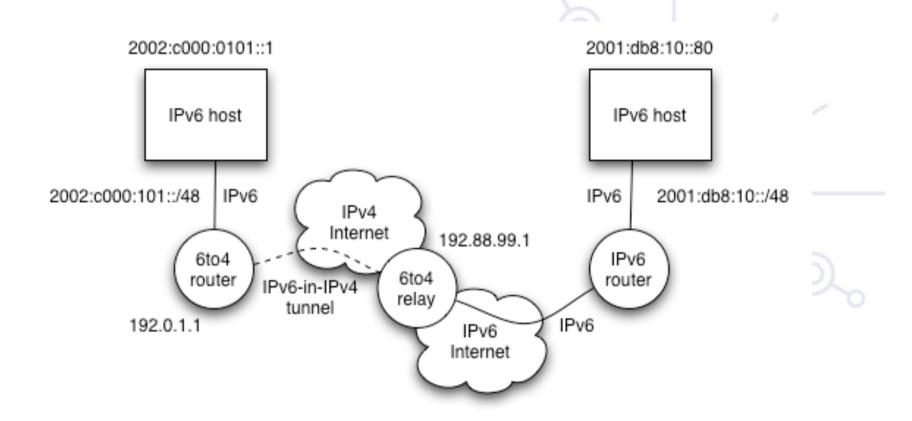
- ip tunnel punching the firewall (protocol 41)
- gre tunnel probably more acceptable since used several times before IPv6
- I2tp tunnel udp therefore better handled by NATs
- Teredo tunnel udp better to avoid host only solution

L3 – L4 Spoofing in IPv4 with 6to4


■ For example, via 6to4 tunnelling spoofed traffic can be injected from IPv4 into IPv6.

□ IPv4 Src: IPv4 Address

IPv4 Dst: 6to4 Relay Anycast (192.88.99.1)


□ IPv6 Src: 2002:: Spoofed Source

IPv6 Dst: Valid Destination

6to4 with relay

- IPv6 Routing Attack
 - Use traditional authentication mechanisms for BGP and IS-IS.
 - Use IPsec to secure protocols such as OSPFv3 and RIPng
- Viruses and Worms
- Sniffing
 - Without IPsec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4
- ICMP attacks slight differences with ICMPv4
 - Recommendations for Filtering ICMPv6 Messages in Firewalls (RFC4890)
 - TCP ICMP attacks slight differences with ICMPv6
 - http://tools.ietf.org/html/draft-ietf-tcpm-icmp-attacks-06
- Application Layer Attacks
 - Even with IPsec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPsec will do nothing to prevent
- Man-in-the-Middle Attacks (MITM)
 - Without IPsec, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4
- Flooding
 - Flooding attacks are identical between IPv4 and IPv6

Vulnerability testing/ assessment

- Testing tools
 - Nmap, Ettercap, Lsof, Snoop, DIG, Etherape, Wireshark, Fping, Ntop, SendIP, TCPDump, WinDump, IP6Sic, NetCat6, Ngrep, THC-IPv6, Amap
- Assessment tools
 - SAINT, nessus, ndpmon, ramond, rafixd
- Solutions implementations:
 - raguard
 - 802.1x

■ ■ ■ IPv6 Security 27

- Scanners: Nmap, halfscan6, Scan6, CHScanner
- Packet forgery: Scapy6, SendIP, Packit, Spak6
- DoS Tools: 6tunneldos, 4to6ddos, Imps6-tools
- THC IPv6 Attack Toolkit: parasite6, alive6, fake_router6, redir6, toobig6, detect-new-ip6, dos- new-ip6, fake_mld6, fake_mipv6, fake_advertiser6, smurf6, rsmurf6

http://freeworld.thc.org/

- IPv6 architecture and firewall
 - NAT does not make secure same level of security with IPv6 possible as with IPv4 (security and privacy)
 - Even better: e2e security with IPSec
 - Weaknesses of the packet filtering cannot be hidden by NAT
 - IPv6 does not require end-to-end connectivity, but provides end-to-end addressability
 - Support for IPv4/IPv6 transition and coexistence
 - Not breaking IPv4 security
- Most firewalls are now IPv6-capable
 - Cisco ACL/PIX, Juniper NetScreen, CheckPoint
 - Modern OSes now provide IPv6 capable firewalls IPv6 Security

Firewall setup

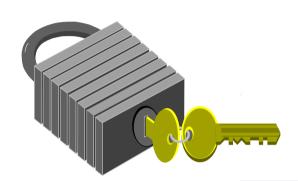
No blind ICMPv6 filtering possible:

	Echo request/reply	Debug
	No route to destination	Debug – better error indication
	TTL exceeded	Error report
	Parameter problem	Error report (e.g. Extension header errors)
	NS/NA	Required for normal operation – except static ND entry
	RS/RA	For Stateless Address Autoconfigration
	Packet too big	Path MTU discovery
	MLD	Requirements in for multicast

Firewalls L4 issues

- Problem FTP
 - Complex: PORT, LPRT, EPRT, PSV, EPSV, LPSV (RFC 1639, RFC 2428)
 - No support in IPv6 firewalls for all the variants
- Solution: HTTP seems to be the next generation file transfer protocol with WEBDAV and DELTA
- Other non trivially proxy-able protocol:
 - No support (e.g.: H.323)

Security: VPNs


- Layer 2 solutions
 - MPLS
- IPSecurity
 - IPSec Suite of protocols
- Other solutions
 - E.g. OpenVPN, Tinc, yavipin, I2tp, pptp, ssl based VPNs

- General IP Security mechanisms
 - From the IETF IPsec Working Group
 - http://tools.ietf.org/wg/ipsec/
 - IP Security Architecture: RFC 4301
- Applies to both IPv4 and IPv6:
 - Mandatory for IPv6
 - Optional for IPv4

- IPSec is a security framework
 - Provides suit of security protocols
 - Secures a pair of communicating entities

IPsec protocol overview IPsec services

- - Authentication
 - AH (Authentication Header RFC 4302)
 - Confidentiality
 - ESP (Encapsulating Security Payload RFC) 4303)
 - Replay protection, Integrity
 - Key management
 - IKEv2 (Internet Key Exchange RFC4306)
 - IPsec modes: Transport Mode & Tunnel Mode
- Implementations
 - Linux-kernel (USAGI), Cisco IOS-12.4(4)T, BSD&OSX(Kame)

- IPv6 has potential to be a foundation of a more secure Internet
- Elements of the IPv6 security infrastructure
 - Firewalls, IPSec, AAA, etc.
 are mature enough to be deployed in production environment.
- Other elements are in usable prototype state
 - CGA, SEND, VPNs

But even these are ready for deployment