

111 Short Module on Security

IPv6 Security

Copy ... Rights

רים הא

- This slide set is the ownership of the 6DEPLOY project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorisation
- Using part of this material must mention 6DEPLOY courtesy
- PDF files are available from <u>www.6deploy.eu</u>
- Looking for a contact ?
 - Mail to : martin.potts@martel-consulting.ch
 - Or bernard.tuy@renater.fr

Acknowledgements

- János Mohácsi, NIIF/HUNGARNET Hungary
- Octavio Medina, Octavio Medina, Laurent Toutain, ENST
- Bernard Tuy, Jérôme Durand, Emmanuel Goiffon, Renater
- Peter Kirstein, Steve Hailes, Piers O'Hanlon, UCL
- Wolfgang Fritsche, IABG
- Jim Bound, Hewlett Packard
- Patrick Grostete, Cisco (now Arch Rock)
- Mohsen Souissi, AFNIC
- Alain Durand, Sun Microsystems
- Bill Manning, ISI

'Eploy

- Alain Baudot, France Telecom R&D
- Pedro Lorga, FCCN
- And many others

Why is there a problem?

רכם בים

- If you believe that encryption (or firewalls or Intrusion Detection Systems) are the answer to all your security problems, then you probably asked the wrong question.
 - Security is about securing a system
 - Security is a process NOT a product
 - Over-concentration on technology is deeply naïve
 - However if you do major changes, like IPv4-IPv6, you must ensure you have introduced new holes

What is new with IPv6?

ביו הא

- Security was considered from the start in IPv6
- Some of the key improvements:
 - IPsec useable with the core protocols
 - Cryptographically Generated Addresses (CGA)
 - SEcure Neighbor discovery (SEND)
 - Protocol for Authentication and Network Access
 - Making intrusion harder

Topics in this module

Threats to be Countered in IPV6

- Scanning Gateways and Hosts for weakness
- Scanning for Multicast Addresses
- Unauthorised Access Control
- Protocol Weaknesses
- Distributed Denial of Service
- Transition Mechanisms
- Worms/Viruses
 - There are already worms that use IPv6
 - e.g. Rbot.DUD

Techniques:

Firewalls

'eol oy

Scanning Gateways and Hosts

Subnet Size is much larger

- About 500,000 years to scan a /64 subnet@1M addresses/sec
- But...

'eol oy

- NMAP does NOT support IPv6 network scanning
- IPv6 Scanning methods are changing
 - DNS based, parallelised scanning, common numbering
- Compromising a router at key transit points
 - Can discover addresses in use

Scanning Multicast Addresses New Multicast Addresses - IPv6 supports new multicast addresses enabling

'eol oy

- attacker to identify key resources on a network and attack them
- E.g. Site-local all DHCP servers (FF05::5), and All Routers (FF05::2)
- Addresses must be filtered at the border in order to make them unreachable from the outside
 - To prevent smurf type of attacks: IPv6 specs forbids the generation of ICMPv6 packets in response to messages to global multicast addresses that contain requests

Security of IPv6 addresses

'eoloy

- Cryptographically Generated Addresses (CGA) IPv6 addresses [RFC3972]
 - Host-ID part of address is an encoded hash
 - Binds IPv6 address to public key
 - Used for securing Neighbor Discovery [RFC3971]
 - Is being extended for other uses [RFC4581]
- Private addresses as defined [RFC 4941]
 - prevents device/user tracking from
 - makes accountability harder
- Host-ID could be token to access network

deoloy **Autoconfiguration/Neighbor Discovery**

- Neigbor Discovery (cf Address Resolution) **Protocol**)
 - Can suffer similar problems of ARP cache poisoning
- Stronger solution with SEcure Neighbor Discovery (SEND) [RFC3971] uses CGA
 - Available in IOS-12.4(24)T, and JUNOS in 9.4 Linux/BSD (DoCoMo's SEND Project)
- DHCPv6 with authentication is possible
- ND with IPSec also possible

Unauthorised Access Control

- Policy implementation in IPv6 with Layer 3 and Layer 4 is still done in firewalls
- Some design considerations!

יפסן סא

- Filter site-scoped multicast addresses at site boundaries
- Filter IPv4 mapped IPv6 addresses on the wire

Unauthorised Access control

יפסן סא

Non-routable + bogon (unallocated) address filtering slightly different

in was IPv4 easier deny non-routable + bogons

<u>in IPv</u>	6 simple	r to perr	nit legiti	mate (a	Imost)
/					

Action	Src	Dst	Src port	Dst port	
deny	2001:db8::/32	host/net	0-(0)	-((Doc prefix - NO
permit	2001::/16	host/net	any	service	
permit	2002::/16	host/net	any	service	6to4 - YES
permit	2003::/16	host/net	any	service	1 02
Deny	3ffe::/16	host/net	any	service	6bone - NO
deny	any	any		9	

Consult for non exisiting addresses at: Ohttp://www.space.net/~gert/RIPE/ipv6-filters.html

L3-L4 Spoofing

1EDLOY

- While L4 spoofing remains the same, IPv6 address are globally aggregated making spoof mitigation at aggregation points easy to deploy
- Simpler to protect due to IPv6 address hierarchy
- However host part of the address is not protected
 - You need IPv6 <- >MAC address (user) mapping for accountability!

Amplification (DDoS) Attacks There are no broadcast addresses in IPv6

TEDLOY

- This would stop any type of amplification attacks that send ICMP packets to the broadcast address
- Global multicast addresses for special groups of devices, e.g. link-local addresses, etc.
- IPv6 specifications forbid the generation of ICMPv6 packets in response to messages to global multicast addresses
 - Many popular operating systems follow the specification
 - Still uncertain on the danger of ICMP packets with global multicast source addresses

Mitigation of IPv6 amplification

- Be sure that your host implementations follow the ICMPv6 spec [RFC 4443]
- Implement Ingress Filtering

יפסן סא

- Defeats Denial of Service Attacks which employ IP Source Address Spoofing [RFC 2827]
- Implement ingress filtering of IPv6 packets with IPv6 multicast source address

Mixed IPv4/IPv6 environments

 Some security issues with transition mechanisms

יבסן סא

- Tunnels often interconnect networks over areas supporting the "wrong" version of protocol
- Tunnel traffic often not anticipated by the security policies. It may pass through firewall systems due to their inability to check two protocols in the same time
- Do not operate completely automated tunnels
 - Avoid "translation" mechanisms between IPv4 and IPv6, use dual stack instead
 - Only authorised systems should be allowed as tunnel end-points

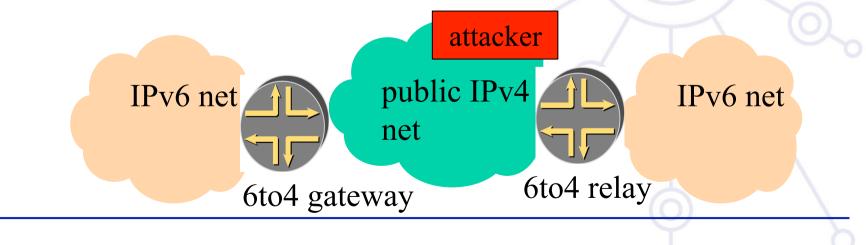
IPv6 transition mechanisms

- ~15 methods possible in combination
- Dual stack:

enable the same security for both protocol

Tunnels:

יפסן סא


- ip tunnel punching the firewall (protocol 41)
- gre tunnel probably more acceptable since used several times before IPv6
- I2tp tunnel udp therefore better handled by NATs
- Teredo tunnel udp better to avoid host only solution

L3 – L4 Spoofing in IPv4 with 6to4

- For example, via 6to4 tunnelling spoofed traffic can be injected from IPv4 into IPv6.
 - IPv4 Src: IPv4 Address

LEDLOY

- IPv4 Dst: 6to4 Relay Anycast (192.88.99.1)
- IPv6 Src: 2002:: Spoofed Source
- IPv6 Dst: Valid Destination

- IPv6 Routing Attack
 - Use traditional authentication mechanisms for BGP and IS-IS.
 - Use IPsec to secure protocols such as OSPFv3 and RIPng
- Viruses and Worms
- Sniffing
 - Without IPsec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4
- ICMP attacks slight differences with ICMPv4
 - Recommendations for Filtering ICMPv6 Messages in Firewalls (RFC4890)
 - TCP ICMP attacks slight differences with ICMPv6
 - <u>http://tools.ietf.org/html/draft-ietf-tcpm-icmp-attacks-06</u>
- Application Layer Attacks
 - Even with IPsec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPsec will do nothing to prevent
- Man-in-the-Middle Attacks (MITM)
 - Without IPsec, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4
- Flooding
 - Flooding attacks are identical between IPv4 and IPv6

Vulnerability testing/

assessment

Testing tools

'EDLOY

- Nmap, Ettercap, Lsof, Snoop, DIG, Etherape, Wireshark, Fping, Ntop, SendIP, TCPDump, WinDump, IP6Sic, NetCat6, Ngrep, THC-IPv6, Amap
- Assessment tools
 - SAINT, nessus, ndpmon, ramond, rafixd
- Solutions implementations:
 - raguard
 - **802.1x**

IPv6 architecture and firewall - requirements

- No need to NAT same level of security with IPv6 possible as with IPv4 (security and privacy)
 - Even better: e2e security with IPSec
- Weaknesses of the packet filtering cannot be hidden by NAT
- IPv6 does not require end-to-end connectivity, but provides end-to-end addressability
- Support for IPv4/IPv6 transition and coexistence
- Not breaking IPv4 security
- Most firewalls are now IPv6-capable
 - Cisco ACL/PIX, Juniper NetScreen, CheckPoint
 - Modern OSes now provide IPv6 capable firewalls

Firewall setup

deploy

No blind ICMPv6 filtering possible:

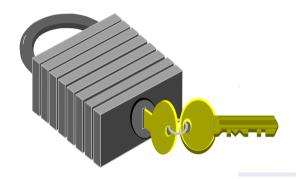
	Echo request/reply	Debug 76			
	No route to destination	Debug – better error indication			
	TTL exceeded	Error report			
	Parameter problem	Error report (e.g. Extension header errors)			
IPv6 specific	NS/NA	Required for normal operation – except static ND entry			
	RS/RA	For Stateless Address Autoconfigration			
	Packet too big	Path MTU discovery			
	MLD	Requirements in for multicast			

Firewalls L4 issues

Problem FTP

- Complex: PORT, LPRT, EPRT, PSV, EPSV, LPSV (RFC 1639, RFC 2428)
- No support in IPv6 firewalls for all the variants
- Solution: HTTP seems to be the next generation file transfer protocol with WEBDAV and DELTA
- Other non trivially proxy-able protocol:

No support (e.g.: H.323)


Security: VPNs

- Layer 2 solutions
 MPLS
- IPSecurity
 - IPSec Suite of protocols
- Other solutions
 - E.g. OpenVPN, Tinc, yavipin, I2tp, pptp, ssl based VPNs

6deploy.eu

- General IP Security mechanisms
 - From the IETF IPsec Working Group
 - http://tools.ietf.org/wg/ipsec/
 - IP Security Architecture: RFC 4301
- Applies to both IPv4 and IPv6:
 - Mandatory for IPv6
 - Optional for IPv4

- Applicable to use over LANs, across public & private WANs, & for the Internet
- IPSec is a security framework
 - Provides suit of security protocols
 - Secures a pair of communicating entities

IPsec protocol overview IPsec services

Authentication

:EDLOY

- AH (Authentication Header RFC 4302)
- Confidentiality
 - ESP (Encapsulating Security Payload RFC 4303)
- Replay protection, Integrity
- Key management
 - IKEv2 (Internet Key Exchange RFC4306)
- IPsec modes: Transport Mode & Tunnel Mode
- Implementations
 - Linux-kernel (USAGI), Cisco IOS-12.4(4)T, BSD&OSX(Kame)

- IPv6 has potential to be a foundation of a more secure Internet
- Elements of the IPv6 security infrastructure
 - Firewalls, IPSec, AAA, etc.
 - are mature enough to be deployed in production environment.
- Other elements are in usable prototype state
 - CGA, SEND, VPNs

But even these are ready for deployment