# **IPv6 Applications**

CEPLOY

0

#### 6DEPLOY – IPv6 Deployment and Support



# **Copy ...Rights**

This slide set is the ownership of the 6DEPLOY project via its partners

The Powerpoint version of this material may be reused and modified only with written authorization

Using part of this material must mention 6DEPLOY courtesy

PDF files are available from <u>www.6deploy.org</u>

Looking for a contact ?

- Mail to : martin.potts@martel-consulting.ch
- Or bernard.tuy@renater.fr

6deploy.org





**IPv6 Application overview** 

**Enabling application for IPv6** 

**VoIP/Conferencing** 

Grid





# Introduction

### All major Operating systems are IPv6-enabled

• WinXP/Vista/Win7, MacOSX, Linux, FreeBSD, AIX, HPUX

### There are already many IPv6-enabled applications

• E.g. Internet Explorer, Firefox, Apache, SSH, ...

### It is not hard to provide basic IPv6-support

• A little more difficult to do it well!

IPv6 www.google.com

www.google.com AAAA?

AAAA 2001:4860:a002::68

**DNS Resolver** 

with Google over IPv6

Google

DNS Server

facebook



# **Content: Now available over IPv6!**

### • Google (YouTube, Mail...)

- www.google.com/ipv6
- For whitelisted networks
  - (i.e. DNS resolvers)
- Facebook
  - www.v6.facebook.com
    - different DNS name path
- 0.2% (~2000) of top 1 Million sites have IPv6
  - From Alexa list They have IPv6 DNS records (AAAA)



# **Applications/Services**

### **Core applications**

- Web browsers & servers,
- Mail User Agents and Transport Agents
- FTP, SSH, Telnet

### **Advanced applications**

- Videoconferencing tools, streaming, ...
- Grid, P2P, Games, ...
- Management and monitoring tools



# **Core applications: Web**

# **Client:**

- Firefox (all platforms)
- Internet Explorer (Windows)
- Safari (MacOSX)
- Wget (Unix/Linux/xBSD)
- ..

### Server:

- Apache2 (All platforms)
- IIS (Windows)
- .



# Web/Apache

- Apache >= 2.x supports IPv6
- Directives
  - Listen 80 (place only *port* and not an IP address)
  - NameVirtualHost <address> (place [ ] before and after the IPv6 address)
  - VirtualHost <endereço> (place [] before and after the IPv6 address)
- Example: httpd.conf

Listen 80 NameVirtualHost [2001:690:1fff:200:20e:cff:fe31:c81f] <VirtualHost [2001:690:1fff:200:20e:cff:fe31:c81f]> DocumentRoot /usr/local/apache2/htdocs/lg ServerAdmin ip6adm@fccn.pt ServerName lg.ip6.fccn.pt ServerAlias lg.tbed.ip6.fccn.pt ServerSignature email </VirtualHost>





# **Core applications: Mail**

# **Client:**

- Thunderbird (all platforms)
- Mail (Mac OSX)
- Outlook Mail (Windows)
- Inframail (Windows/xBSD)

### Server:

- Qmail (Unix/Linux/xBSD)
- Sendmail 8.10
- Postfix 2.2+
- Exim 4.3+...





- It's not only the MX(s) server(s) who need IPv6 addresses...
  - The servers from where your users retrieve e-mail (POP, IMAP, ...) can also start operating with IPv6 enabled

• Transparency !!!



# **Core applications: File transfer**

# **Client:**

- Filezilla (All Platforms)
- Ncftp (All Platforms)
- Fget (Unix/Linux/xBSD)
- Rsync (All platforms)

### Server:

- Ftpd (Unix/Linux/xBSD)
- vsFTP (all platforms)
- Pure-ftpd (all platforms)
- Rsyncd (All platforms)





- VsFTP >= 2.0.x supports IPv6
- Example: /etc/xinetd.d/vsftpd service ftp

{

*socket\_type wait user server server\_args flags nice disable* 

```
= stream

= no

= root

= /usr/local/sbin/vsftpd

= /etc/vsftpd.conf

= IPv6

= 10

= no
```



• Answer on port 21, both in IPv4 and IPv6



# **Core applications: SSH,telnet**

# **Client:**

- Openssh (all platforms)
- PuTTY (all platforms)
- telnet (all platforms)

### Server:

- Openssh (All platforms)
- sshd (Unix/Linux/xBSD)
- telnetd (All platforms)



# **Advanced applications**

## **Videoconferencing tools**

- Ekiga (Win, Linux) dev version
- Media tools VIC & RAT (All Platforms)
- ISABEL (Linux) Managed conferencing
- LinPhone (Linux, Win)

### Streaming

- Windows Media player (v9 onwards)
- Quicktime (Win, OSX)
- VLC (All platforms)
  - IPv6 unicast/multicast streaming
- MPlayer

# CEPLOY

# Advanced applications (2)

### Peer to peer applications

- Bittorrent (All platforms)
  - uTorrent, Vuze...
- Three degrees (Windows) early beta p2p

### Games

- Quake3 (all platforms)
- Xtris (Unix, Linux, xBSD)

### Grid computing

• Globus toolkit (java based)

### **Monitoring/diagnostics**

• Ping6, Traceroute6, Iperf, Wireshark, Microsoft Network monitor3.0

### Management

- Apple's AirPort manager for 'Time Machine' backup system
  - Also provides IPv6 tunnel, routing and RADV



# **Available IPv6 Enabled Applications**

### Many were tested under 6NET.org Project

- Application Database: <u>http://6net.iif.hu/ipv6\_apps</u>
  - Slightly out of date
- 6NET Deliverables discuss their use
  - Particularly those of WP5

### IPv6 Portal (ipv6tf.org) – IPv6 enabled apps site

http://www.ipv6-to-standard.org/index.php

## **Enabling Applications for IPv6**

CEPLOY

o





# Enabling application for IPv6

### Most IPv4 applications can be IPv6 enabled

• Appropriate abstraction layers used

### Providing 'Dual stack' IPv4 and IPv6 is best

• Run-time (preferable) or compile-time network mode (v6 and/or v4)

### All widely used languages are IPv6-enabled

- E.g. C/C++, Java, Python, Perl
- Some languages make it particularly easy
  - E.g Java

### Benefiting from IPv6 is a little more difficult

- Though most functionality is the similar to IPv4
- Add special functionality for IPv6 features

### IPv4 and IPv6 APIs have largely converged



# **Effects on higher layers**

#### Affects anything that reads/writes/stores/passes IP addresses

• Most IETF protocols have been updated for IPv6 compliance

# Bigger IP header must be taken into account when computing max payload sizes

Packet lifetime no longer limited by IP layer (it never was, anyway!)

**Address scoping for multicast** 

New DNS record type: AAAA

**Advanced mobility** 

• Mobile IPv6, Network Mobility (NEMO)



**Sockets API Changes** Name to Address Translation Functions **Address Conversion Functions Address Data Structures** Wildcard Addresses **Constant Additions Core Sockets Functions Socket Options New Macros** 



### **Core Sockets Functions** Core APIs

Use IPv6 Family and Address Structures
 socket() Uses PF\_INET6

#### Functions that pass addresses

bind()
connect()
sendmsg()
sendto()

#### Functions that return addresses

accept()
recvfrom()
recvmsg()
getpeername()
getsockname()



## Name to Address Translation getaddrinfo()

- Pass in nodename and/or servicename string
  - Can Be Address and/or Port
- Optional Hints for Family, Type and Protocol
  - Flags AI\_PASSIVE, AI\_CANNONNAME, AI\_NUMERICHOST, AI\_NUMERICSERV, AI\_V4MAPPED, AI\_ALL, AI\_ADDRCONFIG
- Pointer to Linked List of addrinfo structures Returned
  - Multiple Addresses to Choose From

### freeaddrinfo()

```
int getaddrinfo(
    IN const char FAR * nodename,
    IN const char FAR * servname,
    IN const struct addrinfo FAR * hints,
    OUT struct addrinfo FAR * FAR * res
   );
```

```
struct addrinfo {
    int ai_flags;
    int ai_family;
    int ai_socktype;
    int ai_protocol;
    size_t ai_addrlen;
    char *ai_canonname;
    struct sockaddr *ai_addr;
    struct addrinfo *ai_next;
    };
```



# Address to Name Translation

- Pass in address (v4 or v6) and port
  - Size Indicated by salen argument
  - Also Size for Name and Service buffers (NI\_MAXHOST, NI\_MAXSERV)

i

- Flags
  - NI\_NOFQDN
  - NI\_NUMERICHOST
  - NI\_NAMEREQD
  - NI\_NUMERICSERV
  - NI\_DGRAM

| nt | getnameinfo(                       |
|----|------------------------------------|
|    | IN const struct sockaddr FAR * sa, |
|    | IN socklen_t salen,                |
|    | OUT char FAR * host,               |
|    | IN size_t hostlen,                 |
|    | OUT char FAR * serv,               |
|    | IN size_t servlen,                 |
|    | IN int flags                       |
|    | );                                 |



# **Porting Environments** Node Types

- IPv4-only
- IPv6-only
- IPv6/IPv4

## **Application Types**

- IPv6-unaware
- IPv6-capable
- IPv6-required

# **IPv4 Mapped Addresses**





# **Porting Issues**

### Running on ANY System • Including IPv4-only Address Size Issues New IPv6 APIs for IPv4/IPv6 Ordering of API Calls User Interface Issues

- Use of brackets for literal addresses (RFC2732)
  - e.g."[2001:D::1]"

### **Higher Layer Protocol Changes**



### **Specific things to look for** Storing IP address in 4 bytes of an array.

### Use of explicit dotted decimal format in UI.

### **Obsolete / New:**

- AF\_INET replaced by
- SOCKADDR\_IN replaced by
- IPPROTO\_IP replaced by IPPROTO\_IPV6
- IP\_MULTICAST\_LOOP replaced by SIO\_MULTIPOINT\_LOOPBACK
- Gethostbyname() replaced by get
- Gethostbyaddr() replaced by

getaddrinfo()

AF\_INET6

SOCKADDR\_STORAGE

getnameinfo()

6deploy.org

# **IPv6 literal addresses in URL's**

From RFC 2732

Literal IPv6 Address Format in URL's Syntax To use a literal IPv6 address in a URL, the literal address should be enclosed in "[" and "]" characters. For example the following literal IPv6 addresses: FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

3ffe:2a00:100:7031::1

::192.9.5.5

2010:836B:4179::836B:4179

would be represented as in the following example URLs: http:// [FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]:80/index.html http://[3ffe:2a00:100:7031::1] http://[::192.9.5.5]/ipng

http://[2010:836B:4179::836B:4179]



## Other Issues Renumbering & Mobility routinely result in changing IP Addresses

• Use Names and Resolve, Don't Cache

### **Multi-homed Servers**

- More Common with IPv6
- Try All Addresses Returned

### **Using New IPv6 Functionality**





# **Porting Steps -Summary**

#### Use IPv4/IPv6 Protocol/Address Family

#### **Fix Address Structures**

■in6\_addr

sockaddr\_in6

sockaddr\_storage to allocate storage

#### **Fix Wildcard Address Use**

in6addr\_any, IN6ADDR\_ANY\_INIT

in6addr\_loopback, IN6ADDR\_LOOPBACK\_INIT

#### **Use IPv6 Socket Options**

IPPROTO\_IPV6, Options as Needed

#### Use getaddrinfo()

For Address Resolution

# **Heterogeneous Environments**

CEPLOY

o



# **Precautions for Dual Stack**

### Avoid any explicit use of IP addresses

- Normally do Call by Name
- Ensure that calls to network utilities are concentrated in one subroutine
- Ensure that libraries and utilities used support both stacks
- Do not request functions that would not exist in both stacks
  - E.g. IPsec, MIP, Neighbour Discovery may vary

# **Dual stack configurations**

CepLoy

Both IPv4 and IPv6 stacks will be available during the transition period

Dual network stack machine will allow to provide a service both for IPv4 and IPv6 2 different implementations of network stack



# **Heterogeneous IPv4/IPv6 Environments**

# May require dual-stack client/server, accessible by both stacks

Often used, for example, with Web services and with SIP signalling

### May require transition gateway

tepLoy

As for example with IPv4 telephones accessing other IPv6 ones

May be complex, as when encrypted IPv4 messages are passed into the IPv6 networks with packet header encrypted, or certificate cryptographically bound to IP4 address



# Mapping IPv4 address in IPv6

# IPv6/IPv4 Clients connecting to an IPv6 server at dual stack node $\rightarrow$ 1 socket



Source : Programming guidelines on transition to IPv6 T. P de Miguel, E. M. Castro





# **New Applications**

### Simplified by writing apps using a high-level language

• E.g. JAVA seamlessly supports dual stack

# Design the application in a protocol independent fashion

Ensure both protocols will be simultaneously operable



# **Legacy Applications**

### If most parts are written in say Java, and small parts in say C, try to rewrite C part to be in Java or at least make sure that I/O is concentrated in certain regions

### **Re-architect code so that it provides**

• Appropriate network abstraction layer

### Adjust I/f to code to fit dual-stack specs

- Or do all networking via a utility which is IPv6-enabled
- VIC, RAT using RTP are good example

## **Voip/Conferencing for IPv6**

CEPLOY

0





# **Origins of packet based multimedia**

#### 1974

 Realtime Packet Voice demonstrated between USC/ISI and MIT/LL, using CVSD and Network Voice Protocol (NVP[RFC471]) on IPv5 (ST[RFC 1819])

#### 1976

 First packetised speech over SATNET between Lincoln Labs and both NTA (Norway) and UCL (UK).

#### 1991

• LBL's audio tool vat released for DARTnet use.

#### 1992

• First IETF MBone audiocast (San Diego, CA)

#### 1993

• Video Conference (VIC) tool released by LBL

#### 1995

• Robust Audio Tool (RAT) released by UCL

#### 1996

• RTP standardized (RFC 1889/1890)

#### 1996

H.323v1 published

#### 1999

• SIP standardized (RFC 2543)



# **VoIP protocol overview**

#### Session control/setup protocols

- Session Initiation Protocol (SIP) IETF standard RFC3261
  - Widely used for VoIP and conferencing
  - IPv6 support in Proxies: open/SER, Asterisk, CUCM-7
    - Clients: Snom, Ekiga-3.2, linphone
- H.323 ITU-T Standard
  - Widely used for conferencing
  - Supports IPv6 operation: Tandberg (2008), OpenH323
- Skinny Call Control Protocol (SCCP) Cisco protocol
  - Used in Cisco VoIP systems, also support in Asterisk
  - Supported IPv6 operation on CUCM 7

#### Media transport protocols

- Realtime Transport Protocol (RTP) IETF RFC3550 (in ITU-T H.225)
  - Dominant media transport protocol used by all of above

## UCL Media tools http://mediatools.cs.ucl.ac.uk/ VIC – Video tool

- Lawrence Berkeley National Lab
  - Initial Funding: ARPA, DoE
  - First LBL release 2.0a (Oct 93)
- Taken over by UCL in 2000

### **RAT – Robust Audio tool**

- University College London
  - Initial funding: MICE EU Project
  - First release: RAT-1 95

#### Common

deploy

- University College London
  - Initial funding: MECCANO EU PRoject
  - First release: common-1.0.0 (Nov 98)



# **RAT (Robust Audio Tool)**

### Motivation

- Move beyond existing tools: VAT(LBL), nevot (AT&T), vt(ISI)
- New features; Redundant Audio, Loss concealment schemes, samplerate conversion, IPv6, Stereo, 3D audio, etc

### Origins

- University College London
  - MICE (Multimedia International Conferencing for Europe) EU Project(s): '92-95
  - EU:{MERCI (95-97), MECCANO(98-00), COIAS(98-00)} HICID(97-00)
  - RAT EPSRC Project: '96-99
  - Relate (**Re**mote Language **Te**aching) BT Project : '94-97
- Credits
  - C.Perkins, O.Hodson, I.Kouvelas, V.Hardman, A.Sasse, M.Handley, S.Varakliotis, and many more



# **RAT Screenshot**

deploy

...

| RAT v4.3.00: Unti                                          | itled session |                    |
|------------------------------------------------------------|---------------|--------------------|
| <ul> <li>Listen</li> <li>Speaker</li> <li>Vol 4</li> </ul> | Talk          | 0.0 b/s<br>Gain 36 |
|                                                            |               |                    |
| Piers O'Hanlon<br>Piers O'Hanlon(lion)                     |               |                    |
|                                                            |               |                    |
| - Ⅲ 2                                                      | Options About | Quit               |



# RAT(v4) Current Architecture

#### Source code: C & Tcl/Tk

#### Two main processes

- Controller process parses arguments and spawns 2 processes
- Communication using MBUS over local multicast
- Built on UCL common library

### Media Engine

- Auddev: Drivers to various audio hardware
  - Linux (new: ALSA1.0 & OSS), Win32, OSX, Solaris, BSD
- Packet reception/transmission and RTP de/packetisation
- Mixing, Redundancy support, Layering, Loss concealment schemes, IPv6, Stereo, 3D audio, sample-rate conversion
- Codecs: G.711, G.726, GSM, DVI, LPC, L16...

### **User interface**

- Tcl/tk GUI to control media engine
- Others possible (Java one has been done)



# RAT: IPv6

#### **Included IPv6 support since 1998**

• On Linux, FreeBSD, & Windows NT4

### Minimal changes required as Common is IPindependent

#### Some changes:

- #includes header files for IPv6 (not necessary now as they come with std networking #includes)
- Text handling of addresses



# VIC (VideoConference tool)

## Motivation

- Move beyond existing tools: e.g. ivs(INRIA), nv(Xerox)
- Increased range of codecs, networking options, GUI, packet loss tolerance

# Origins

- Lawrence Berkeley National Lab
  - Funding: DoE, ARPA
  - Later University of California, Berkeley
    - NSF, DEC, SUN, SGI
    - MASH Project
- Credits
  - S.McCanne, V.Jacobson, E.Amir, and many more





# **VIC Screenshot**

|            | Socrates (gorilla)<br>ucacsva@128.16.66.76/h261<br>19 f/s 231 kb/s (0%) |         |         |
|------------|-------------------------------------------------------------------------|---------|---------|
|            | 🔲 mute                                                                  | 📕 color | info    |
| -          | Piers O'Hanlon<br>piers@128.16.64.202/h261<br>7.8 f/s 59 kb/s (0%)      |         |         |
| 6 -        | 🔲 mute                                                                  | 👅 color | info    |
| VIC v2.8uc | 11.2.0                                                                  | Menu He | lo Quit |





# **VIC Current Architecture**

### Source code: C/C++ with tcl/tk GUI Single process

- Tcl/C++ components connected using tcl scripting
- Uses UCL common for MBUS and DES
- Integrated some MASH code into UCL vic
  - E.g. Packet-buf, layered codec support (PVH)

#### Subsystems

- RTP : Session handling
- NET : Network support (IPv6/4, ATM, etc)
- VIDEO : Grabber hardware drivers (new: WDM)
- RENDER : Video rendering/conversion
- CODEC : H.261, H.263, PVH, BVC, JPEG, CellB, NV



# VIC: IPv6

### Included IPv6 support since 1998 v2.8ucl4

• On Linux, Solaris, & Windows NT4

### Quite a few changes required as it doesn't use UCL Common for networking (only MBUS)

### IPv6 support initially from UCLA

Modified by UCL later

UCL added IPv6 SSM support

# **GLOBAL EU Project**

depLoy

**Global Linkage Over BroadbAnd Links** 

#### The GLOBAL project has set up a collaborative e-Infrastructure, called the Virtual Conference Center (VCC), which enables the regular realisation of virtual events.

#### The GLOBAL project objectives:

- Providing the "Virtual Conference Centre" Collaborative e-Infrastructure
- Realisation of Global Networking Sessions
- Disseminating the Results and Providing Sustainability
- Providing Services for Third Parties



# **GLOBAL Project**

### The project is supported by the European Commission's FRAMEWORK 7 PROGRAMME/THEME: Capacities/ Research Infrastructures.

• Project dates: 2008-05-01 - 2010-10-31

#### **Partners**

- Zentrum für Soziale Innovation (ZSI), Austria
- U. Politécnica de Madrid (UPM), Spain
- Agora Systems S.A. (ASSA), Spain
- Cooperación Latino Americana de Redes Avanzadas (CLARA)
- University College London (UCL), United Kingdom
- Jozef Stefan Institute (JSI), Slovenia
- Ubuntunet (Ubuntunet), Malawi





# UCL: Leads WP4 & T1.3

#### WP4: Liaison with 3rd Party Users and Systems

- Support Organisers of 3rd Party Events
  - Projects, Organisations: TERENA, DANTE, GEANT..
- Support Users of 3rd Party Events
  - CLARA, UBUNTUNET, Silk NRENs (Central Asia)...
- Support Developers of 3rd Party Systems
  - Provide specific Gateway API (GAPI) to ISABEL

#### **Task 1.3: Interworking infrastructures**

- Investigation of gateways with other systems
  - SIP, H.323, SCCP



# **CLARA: leader of Task 1.4**

#### **T1.4: Narrowband Access to virtual events**

- The goal is to allow access to sites that, for lack of resources, can't normally connect to an Isabel session.
- It's divided in two parts:
- A client that allow access from ADSL lines.
- Access from mobile devices.
- Easy to use interface / no technical personnel required.



# **Conferencing systems**

### **ISABEL (GLOBAL project)**

• Has supported IPv6 for a few years

### AccessGrid

- Has IPv6 media support for a few years
  - Due to UCL VIC and RAT
- UCL implemented IPv6-IPv4 gateway in 6NET project

### Commercial

• Cisco/Tandberg and others



### **Open Grid Forum IPv6-Working group**

- Formed in 2003 during 6net project
  - WG Chairs: Myself and Brian Carpenter (IBM/University of Auckland)
- Issued two Standards documents:
  - T. Chown, S. Jiang, P. O'Hanlon, J. Bound, Guidelines for IP version independence in GGF specifications, GFD.40, Jan '05
  - Rute Sofia, Survey of IPv4 Dependencies in Global Grid Forum Specifications, GFD.41, Nov '04

### Globus Toolkit – Initial IPv6 support in GTv3.2

- UCL IPv6-enabled GT4 in 2005 under 6net project
  - <u>http://www.cs.ucl.ac.uk/staff/sjiang/webpage/How-to-IPv6-in-GT4.htm</u>
  - <u>http://bugzilla.globus.org/bugzilla/show\_bug.cgi?id=2232</u>

#### 2009: 3TERA Cloud IPv6 enabled



# **Smart [power] Grid**

### Smart Grids are being developed globally

- Make grid more efficient potential large cost savings
  - US estimated \$56-112 Billion saving in 20 years
- Earliest examples
  - 2005: Italy Telegestore project €2.1B annual savings €500M per year!

### 2009: US Smart Grid Initiative - \$8.1 Billion

- 40 Million smart meters...
- <u>http://www.nist.gov/smartgrid</u>
- Smartgrid BoF at IETF76 in Japan, Nov 2009
- ftp://ftpeng.cisco.com/fred/IETF-SG/
- Happening fast standards to be ready by end 2010

#### Large number of addresses => Need for IPv6



6deploy.org





### Many existing applications are available in IPv6

### Porting applications to IPv6 is straightforward

• Provided certain guidelines are followed

# Heterogeneous environments provide the most challenges