IPv6 status and Prospects

Peter T. Kirstein
University College London

The Theme of the Talk

- There are many current considerations of the shape of the future Internet
 - The only immediate candidate is IPv6
- Information on what it is, why it will come, and what it will bring are vital to all
 - But the planning for the transition is slow
- The EC and the European research community are ready to move in this direction
 - I will indicate what is happening here
- The transition will require training
 - Some of the training initiatives will be mentioned here

IPv4, IPv6 and Address Depletion

- Because of its 32 bit address length, IPv4 has 256 blocks of 16 M addresses – called a /8
- There is a mechanism for allocating the addresses
 - But they are being used up at a rapid rate
- There are many aspects of IPv4 protocols that one thinks now need improvement
 - But address depletion is an important driver
- We decided around 1990 that a re-think of current IPv4 protocols was needed
 - Result was IPv6
 - Much larger address space and other improvements

Mechanism of IPv4 Address Allocation

- IPv4 addresses used to be allocated in an ad hoc fashion
 - I personally held two /8 blocks for .UK and .Int!
- Now there is a system of Internet Registries
 - World (IANA), Regional (RIRs), and Local (LIRs)
 - RIRs allocate blocks to Local Internet Registries (LIRs)
 - LIRs allocate blocks to end users
- IANA allocates /8 blocks to RIRs No charge
 - RIRs have their own policies on such allocations
 - LIRs have their own policies subject to some RIR rules
 - All provisions are only on a cost recovery basis
- See http://www.nro.net/documents/comp-pol.html

IPv4 Allocations by Region

IPv4 Allocations

Cumulative Total as of June 2008

Urgency due to Address Depletion

- Address depletion stated too often
 - but now there
 - http://www.potaroo.net/tools/ipv4/
- Address Exhaustion defined as when Last /8 reached
- Triggers new emergency mechanisms to conserve space
- IANA reached last 5 /8s in February 11
 - Allocated last 5 /6 blocks to RIRs
 - APNIC reached last /8 in April 2011
- Will only get much smaller number of global IPv4
 - Stricter rules on use of allocations
- Has impact on new applications which need global
 - applications (particularly with security) or p-p

Estimate of RIR Exhaustion Date

- When exhaustion date reached much firmer allocation policies are introduced
- Estimated Exhaustion Dates (at current rates)
 - APNIC:19-Apr-2011
 - RIPENCC:28-Feb-2012
 - AFRINIC:31-Jul-2013
 - ARIN:20-Nov-2013
 - LACNIC:08-May-2014
- Exhaustion date does not mean end, but much stricter rules on allocation – e.g. at most 1 K address
 - Policy will differ in different regions

IPv4 Allocations by Region – 2/11

Exhaustion Date Estimate Variance

IPv4/8s In Various Categories

Address Problem by Region

- Mature regions have much larger historic allocations
 - Hence have less urgency to move to IPv6
- Asia-Pacific and Africa have much worse problem
 - Many have major interest in large-scale growth
 - Particularly China, Japan, Korea must move fast
- Since the only protocol stack which has been properly designed is IPv6, the above countries have gone into routine operation earlier with IPv6
- However this is now changing also in other regions

Activities in Region

- Mature regions have much larger historic allocations
 - Hence have less urgency to move to IPv6
- Asia-Pacific and Africa have much worse problem
 - Many have major interest in large-scale growth
 - Particularly China, Japan, Korea had to move fast
- All three have large deployments
 - CERNET-2 all IPv6 with 10 Gbps
 - China says they will go all IPv6 by 2016
 - Japan has had WIDE development project since 1999

What is IPv6

- Successor to current IPv4 Internet Protocol
 - Under development since about 1993
 - Ratified as Standard by IETF around 2001
- Principal characteristics
 - Much more address space 128 bits instead of 32
 - Mobile IP support mandatory (better than in IPv4)
 - IPSEC mandatory (could be done in IPv4)
 - Better auto-configuration
 - Better multicast
 - More space for flow-control options
 - More efficient processing of header options

Why was it not adopted years ago?

- Needed complete new suite of programs in each component of the infrastructure and terminal
 - Virtually all the components are now in place
 - Mostly in dual-stack mode so that either version usable
- Needed clear concept of how to do transition
 - This will clear be done via dual-stack
 - Mechanisms for operational transition now defined
- Needed technical and/or economic reason to move
 - Killer applications only slowly emerging
 - Address space depletion put off by technical measures and less serious in North America and Europe
 - Considerable concerns of cost/benefit of transition training, equipment, disruption

Current Status

- Impact of address depletion imminent
- Major studies done on cost of transition
 - E.g. GSA, DoD in US
- Research activities 2000-2006 showed ease of putting dual-stack in the network core and terminals
 - DoD pilots and testbeds 2005-2007
- Most Research networks now dual-stack
- Terminal equipment often has IPv6 1st choice
 - Microsoft since Vista, IPv6 preferred, goes to IPv4 if needed
 - Mobile have IPv6 since v 4.1 of WIN-CE6, Symbian OS7.0
 Linux and BSD have long had IPv6 standard
 - Most big providers move to dual stack
 - Though not all applications as complete (e.g. Cisco VoIP/CUCM)
- June 8 IPv6 day

IPv6 Day

- Big providers showed IPv6 readiness
 - Google, Yahoo, Akimai, Cisco
- Large User Organisations showed they were ready
 - E.g. NRENs, SPAWAR, some enterprise sites
- Traffic proportion IPv6 still low typically 0.1%
 - But went up 60% on day dropping to 30% thereafter#
- However there were few real problems
 - Most solved on the day
- Expect steady migration of major services permanent
 - Also expect IPv6 week in February 12

Ratio of IP6/IPv4 AS Distribution 1/09

Dark/medium/light green show >10%, 5%-10%, <5% Clearly South Africa is an early adopter

Stages of Adoption of IPv6

- There have been many studies of the stages needed to transition to IPv6
 - A good one was published by the ECC committee of CEPT
- The report outline the stages for public IPv6 transition:
 - 1 The core backbones must go dual-stack
 - 2 The ISP must embrace dual-stack working
 - 3 Content servers must become IPv6 accessible
 - 4 User equipment may become dual stack
- The report also analyses the progress of the different countries along this path
 - In general, it is a long haul to get organisations transitioned

US DoD Transition Good Case Study

- 2001 Electronics Board tasked to produce strategy
- 2003 Came up with broad policy
 - All new systems from 03 be IPv6 capable, IPv4 Interoperable
 - Support testbed (NAVIPv6) in university
 - Identify a at least 3 major projects that could be IPv6 Pilots
 - Transition 2005 2007
 - DISA manage and control all IPv6 address space for DoD
- Set up labs and testbeds
 - With ever increasing functionality
- Set major standards for DoD
- Built database of accredited suppliers and applications
 - Working closely with industry

Japan More General Strategy

- WIDE Project worked on IPv6 from 2000
 - Strong involvement from industry
 - Director, Murai, moved to Prime Minister's Office
 - Built IPv6 infrastructure around 2000
 - KAME to provide IPv6 OS around 2000
 - Worked on mobile applications (and cars)
 - Equipped major building in Keio U for energy monitoring and conservation
- Sony early research activity including 6NET
 - 2004 stated all relevant future projects would be IPv6
 - Withdrew from effort on in games in 6NET to continue it in Japan
 - Games are p p and need the IPv6 addresses

European Framework Research

- Significant pilot network projects 2000 2005
 - 2000-2003 6INIT (infrastructure), 6WINIT (mobile apps)
 - 2003-2005 Serious Pilots 6NET (network plus apps),
 EurolX (Internet exchanges), Security
- Training and Applications 2006 2009
 - 2006-2010 6LINK, 6DISS, 6DEPLOY, 6CHOICE
 - 2007-2009 Civil Protection (U2010), 6Power, 6SAT
- From 2010 no particular IPv6 Projects
 - But assume that most projects will use IPv6 in their execution
- Research Infrastructure GEANT dual stack
 - Most European NRENs also dual stack
 - Very few universities have much IPv6

Many Actively Promoting IPv6

- IPv6 Forum frequent Awareness Meetings
 - Many national IPv6 Task Forces
 - IPv6 Readiness Logos
- 2008: European Commission IPv6 Action plan
 - Propose 25% users be able to connect with IPv6 by 2010
 - Proposes EC and EU e-Gov sites be enabled
- 2009: 1st EU Agency provides IPv6 web access
 - European Network & Information Security Agency (ENISA)
- IPv6 EU Deployment Monitoring Survey
 - By TNO, GNKS Consult and RIPE
 - 610 respondents, including government bodies, ISPs, other technology houses, and education

Survey results: European IPv6 use

- 79% have or in process of getting IPv6 addresses
 - 97% of educational institutes have IPv6 addresses.
- 17% using IPv6
 - 8% of ISPs are using IPv6
- 30% concerned about IPv4 depletion
 - Compared with 48% concerned outside the EU
- Why not deployed yet?
 - 70% No business case
 - 57% lack of user demand

New Protocols

- Survey indicates lack of interest or understanding of urgency
- Neither organisations nor user understand the impact of protocol progress over last eight years
- IETF has concentrated on IPv6 with new protocols
 - Many could be developed for IPv4, but have not been
 - Examples are improved 6LowPAN (low power protocols),
 ROHC (Robust Header Compression), MIP6 (mobile users),
 NEMO (mobile networks), MANEMO (Mobile ad hoc)
- Thus many of the future applications do not really have good IPv4 protocol support

Future Driving Needs for IPv6

- Know predicting future is a mug's game
- Mobile Important driver
 - IMS needs global access, agreed that it be IPv6
 - As VoIP goes mobile, needs many addresses, not IPv4
- Smart grids being developed globally
 - Needs many addresses
- All peer-peer traffic
 - Games, VoIP, Conferencing, Supplier push advertising
- Major interactive automobile services
 - Again problems of data push if private addresses

Smart [power] Grid

- Smart Grids are being developed globally
 - Make grid more efficient potential large cost savings
 - US estimated \$56-112 Billion saving in 20 years
 - Earliest examples
 - 2005: Italy Telegestore project €2.1B annual savings €500M per year!
- 2009: US Smart Grid Initiative \$8.1 Billion
 - 40 Million smart meters
 - http://www.nist.gov/smartgrid
 - Smartgrid BoF at IETF76 in Japan, Nov 2009
 - Happening fast standards to be ready by end 2010
- Large number of addresses => Need for IPv6
 - Could be done with IPv4 and private address spaces but would be much harder and constrain customers

Emergency Communications

- U-2010 showed applicability of IPv6
 - Significant Luxembourg demo with fire, police & ambulance
- Some of the conclusions of the EC IP
 - Gateway to TETRA, but much better performance
 - Large-scale addressing of sensor networks
 - Capability of dealing with adhoc network
 - Ability to deal with security of sensor nets and media
 - Addressing size allows federation of different agencies on specific VPNs
 - Autoconfiguration allows easier set up of networks when infrastructur has been destroyed
- Requires relevant authorities to look at transition questions in the light of current TETRA deployments

Personal Communications

- Few VoIP and Conferencing systems fully IPv6
 - Though with scale envisaged, IPv6 would be needed
- Some Open Source products already enabled
 - ISABEL, VIC/RAT, Linphone, SIP-Communicator
 - Though not all completely IPv6-tested yet
 - OPENSER and ASTERISK have open-source IPv6 versions
- Less Commercial products fully available, but e.g.
 - Cisco has product (with limited protocol support)
 - Tandberg is IPv6 ready
 - There Is still very limited inter-vendor testing

What should we do for Services

- Ensure backbone networks are dual stack
- Ensure your main servers can run dual-stack
 - Web, file, message
- Ensure your local infrastructure has dual-stack capability
 - Running via tunnels to other islands if necessary
- Evaluate major software systems you use are IPv6-ready
 - Ensuring new procurements have dual stack upgrade clauses
- Ensure that terminal equipment is IPv6-ready
- Start running dual-stack in your organisation
- Start running some IPv6 services like conferencing or web
 - Using tunnels if other infrastructure not ready

What should we do for new Apps

- Once you are running some sort of IPv6
 infrastructure, it is worth exploring where advanced
 IPv6 features would help, e.g.
 - Mobile applications or ones with ad hoc nodes, where MIPv6, NEMO or MANEMO will be useful
 - Peer-peer applications, where you will run out of address space
 - Large-scale monitoring applications, where both large address space and 6LoWPAN will help
 - Emergency situations where the address space helps automated VPN construction, auto-configuration helps and the built-in IPv6 are particularly helpful

Training

- Clearly training is a major need
 - There are already many initialives
- Cisco Academy recently reviewed all its module
 - Now many consider IPv6
- 6DISS and now 6DEPLOY IPv6 training project
 - Has produced some 30 modules for IPv6 training
 - Provides about a dozen 3-day courses each year
 - Mainly in emerging economies
 - Has strong practical component, with local and remote labs
 - Labs provided by Cisco
 - Paris, Sofia and Mauritius active
 - Bangalore, Bishkek, Istanbul, Nairobi, Tbilisi, S.America soon
 - Now mainly routers, soon also VoIP and Sensor nets

6DEPLOY Project

- 6DEPLOY is training Project
 - Has produced some 30 modules for training
 - Provides dozens 3-day training each year
 - Sometimes shorter
 - Has strong practical component using labs
- Cisco donated labs to project
 - By end of 2011 20 labs, 2 in this region
- All labs now have standard equipment
- Some act as Standard Labs
 - Common booking system, procedures, addressing
- Workshops can use labs locally, remotely, together

Intentions of Project and Labs

- The intention is to develop centres of expertise
- The labs are distributed regionally in order to encourage them to foster regional training
 - Are concentrating on emerging economies
- Cisco provides hardware and initial software support
- The 6DEPLOY Project provides an initial training workshop
- The intention is that the institutions quickly become self-sufficient and do their own training
- It is hoped that the labs will all cooperate strongly

New Features in Labs Planned

- Server-based software routers
 - Based on Cloud Computing
 - Will co-operate with physical routers
 - Will be able to use physical or virtual routes locally or remotely
 - Some will be provided in remote labs, some will be provided as a cloud for Internet use
- Developing some new applications areas
 - VoIP, Conferencing, Sensor Neworks
 - Standard Labs may be equipped with these in the future

This Workshop

- Today we have launched the Almaty Lab
- This is the first introductory workshop
- We hope that this will inaugurate major IPv6 training in Kazakhstan
 - This centre is not nearly enough
- It is intended that this lab be used locally for training
 - But also remotely both for other 6DEPLOY courses and for many others locally
- We hope that this will start the deployment of IPv6 in the country and the region