Despliegue de IPv6: Guayaquil - WALC2011

10-14 Octubre 2011

Práctica Routing – Madrid Lab

Alvaro Vives (alvaro.vives@consulintel.es) v1.2

Esquema Testbed Madrid

Esquema Testbed Madrid

Routers login:

Usar el protocolo telnet utilizando:

Router	Dirección IPv4	Puerto
Router1	213.171.225.106	2035
Router2	213.171.225.106	2036
Router3	213.171.225.106	2037
Router4	213.171.225.106	2038
Router5	213.171.225.106	2039
Router6	213.171.225.106	2040

Información de connexion de Routers

Login: **6deploy** Password: **6deploy**

Ya entran en modo enabled.

Configuración de Direcciones

Antes de nada, activar routing IPv6 (ipv6 unicast-routing). 1°) Configurar el siguiente plan de direcciones en los routers.

Interfaces de Loopback:

Nombre	Dirección IPv6 Loopback	Dirección IPv4 Loopback
		(para router-ID)
Router1	2001:db8:1:1::1/128	10.1.1.1/32
Router2	2001:db8:1:1::2/128	10.2.2.2/32
Router3	2001:db8:1:1::3/128	10.3.3.3/32
Router4	2001:db8:1:1::4/128	10.4.4/32
Router5	2001:db8:1:1::5/128	10.5.5.5/32
Router6	2001:db8:1:1::6/128	10.6.6/32

Interconexiones:

Interconexiones (R1 - R2)	Prefijo
Router1 - Router2	2001:db8:2:10::/64
Router2 - Router3	2001:db8:2:12::/64
Router2 - Router5	2001:db8:2:11::/64
Router3 - Router5	2001:db8:2:13::/64
Router3 - Router4	2001:db8:2:14::/64
Router5 - Router5	2001:db8:2:15::/64

Dirección R1 = prefijo::1 Dirección R2 = prefijo::2

2°) Comprueba que puedes hacer ping a los routers directamente conectados al tuyo.

3°)Verificar los detalles relacionados con IPv6 de una interfaz. Escribe las distintas direcciones observadas, identificando cuál es su tipo y uso.

Topología de Routing a implementar

• Todos los routers compartirán la información de routing IPv6 usando OSPFv3. Todos estarán en el area de backbone (Area 0)

Configuración OSPF para IPv6

1°) Habilitar el protocol de routing OSPFv3 para IPv6 en todos los routers.

2°) Habilitar CEF(Cisco Express forwarding) switching para IPv6 en los routers CISCO.

3°)Habilitar el proceso OSPFv3 configurado en el primer punto, para todas las interfaces del laboratorio (excepto las interfaces de loopback). Usar area 0 para OSPFv3.

4°) Comprobar que las conexiones OSPFv3 se han establecido entre los routers. (Router# show ipv6 ospf interface Router# show ipv6 ospf neighbor)

5°)Redistribuir las direcciones de loopback en OSPFv3.

6°)Comprobar que todos los routers del lab reciben todos los prefijos de las interconexiones y loopback via OSPFv3. (Router#show ipv6 route Router#show ipv6 route ospf)

7°) Comprobar que se llega a todas las direcciones de loopback de los routers desde tu router usando ping.

Configuración de BGP para IPv6

1°) Configurar un peering eMBGP entre Router2 y Router3, otro peering entre Router2 y Router5 y otro peering entre Router3 y Router5. Para ello, las direcciones de interconexión deben usarse para configurar los peerings. También tener en cuenta:

- Número AS de Router2 es 65152
- Número AS de Router3 es 65153
- Número AS de Router5 es 65154

Hay que deshabilitar OSPF en las interfaces "externas":

- Para Router2, OSPF debe deshabilitarse en vlan12 y vlan11
- Para Router3, OSPF debe deshabilitarse en vlan12 y vlan13
- Para Router5, OSPF debe deshabilitarse en vlan11 y vlan13

2°) Configurar un peering iMBGP entre:

- Router1 y Router2
- Router3 y Router4
- Router5 y Router6

Nota: Para los anuncios de iMBGP se usan las direcciones de loopback de los routers. Por eso las direcciones de loopback deben de alcanzarse via OSPF.

3°) Comprobar el estado de los peering eMBGP e iMBGP. Deben estar en estado establecido antes de seguir con la práctica. (Router#show bgp ipv6 neighbors)

4°) Comprobar que se reciben prefijos por los peerings eMBGP. Tambíen confirmar que éstos se propagan a los routers del lab a través de los peerings iMBGP.
(Router#show bgp ipv6 unicast Router#show ipv6 route bgp)

Anunciar por BGP los siguientes prefijos desde los routers con eBGP:

- Para Router2: 2001:DB8:CAFE:2::/64
- Para Router3: 2001:DB8:CAFE:3::/64
- Para Router5: 2001:DB8:CAFE:5::/64

